Quantum Gates
Introduction
Import the modules
from qiskit import QuantumCircuit, execute, Aer
from qiskit import QuantumRegister, ClassicalRegister #The newer version uses Registers
from qiskit.visualization import plot_histogram, plot_bloch_vector
from math import pi
a = 0
b = 1
t = 2
Plot the quantum circuit
qc.draw('mpl')
#qc.draw('latex')
#qc.draw('latex_source')
Plot the results
backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit
qc.measure_all()
qc.draw()
result = execute(qc,backend).result() #.get_statevector() #.get_counts()
plot_bloch_multivector(result)
counts = result.get_counts()
plot_histogram(counts)
Theory
Quantum Gates of One Qubit
There are only two reversible gates, also identity (return the input unchanged) and NOT (return the opposite of the input), but neither is universal.
Identity gate.
Pauli X gate.
Pauli Y gate
Pauli Z gate
R gate
S gate or gate
T gate
U1 gate:
U2 gate:
qc = QuantumCircuit(1)
qc.x(0)
#qc.y(0) # Y-gate on qubit 0
#qc.z(0) # Z-gate on qubit 0
#qc.rz(pi/4, 0)
#qc.s(0) # Apply S-gate to qubit 0
#qc.sdg(0) # Apply Sdg-gate to qubit 0
qc.t(0) # Apply T-gate to qubit 0
qc.tdg(0) # Apply Tdg-gate to qubit 0
Two Qubit Quantum Gates
The reversibel gates are eg. identity, or CNOT.
Eg. .

Eg. CNOT is a conditional gate that performs an X-gate on the second qubit, if the state of the first qubit (control) is . . This matrix swaps the amplitudes of |01⟩ and |11⟩ in the statevector. .
CNOT if a control qubit is on the superposition:
, which is Bell State. Entanglement, but no-communication theorem.
. Unchanged.
.
. Affects the state of the control qubit, only.
qc = QuantumCircuit(2)
qc.h(0) # Apply H-gate to the first:
qc.cx(0,1) # Apply a CNOT:
Any controlled quantum gate is and in Qiskit formalism is written in matrix as
-
Controlled H
-
Controlled Y
-
Controlled Z
Controlled-Z. Because and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H Z H = X} we can write
qc = QuantumCircuit(2)
# also a controlled-Z
qc.h(1)
qc.cx(0,1)
qc.h(1)
Controlled-Y is
qc = QuantumCircuit(2)
# a controlled-Y
qc.sdg(1)
qc.cx(0,1)
qc.s(1)
or Controlled-H is
qc = QuantumCircuit(2)
# a controlled-H
qc.ry(pi/4,1)
qc.cx(0,1)
qc.ry(-pi/4,1)
Swap gate: CNOT.
An arbitrary controlled-controlled-U for any single-qubit rotation U. We need Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V = \sqrt U} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^\dagger}
#The controls are qubits a and b, and the target is qubit t.
#Subroutines cu1(theta,c,t) and cu1(-theta,c,t) need to be defined
qc = QuantumCircuit(3)
qc.cu1(theta,b,t)
qc.cx(a,b)
qc.cu1(-theta,b,t)
qc.cx(a,b)
qc.cu1(theta,a,t)
Three Qubit Gates

For universal computations we need more qubits. Eg. the AND gate is not reversible, and thus we need eg. Toffoli (CCNOT) gate.
Toffoli gate performs Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} on target qubit if both control cubits are set to state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle} .
qc = QuantumCircuit(3)
# Toffoli with control qubits a and b and target t
qc.ccx(a,b,t)
Toffoli using CNOTs uses fewer gates.
qc = QuantumCircuit(3)
qc.ch(a,t)
qc.cz(b,t)
qc.ch(a,t)
AND gate is Toffoli gate with . . .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{CCNOT}(x,y,z) = (x,y,( x \and y ) \otimes z )} gives the reversible NAND Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{NAND}(x,y) = \text{CCNOT}(x,y,1) = (x,y,( x \and y ) \otimes 1 )}
NAND gate is
Multiple Controlled Toffoli
mct()
Logical Gates
The gates must be reversible.
Not Gate
The X gate is a not gate, and is reversible.
And Gate
The classical And mixes the inputs, thus we need two inputs. The Toffoli gate will do
qc.ccx(q[0], q[1], q[2])
Nand Gate
The Nand Gate is easy after the And gate. Just apply the Not gate.
qc.ccx(q[0], q[1], q[2])
qc.x(q[2])
Xor gate
Or gate is true only if either of inputs is true. Thus we have:
qc.cx(q[1], q[2])
qc.cx(q[0], q[2])
Or Gate
The Or gate is true if either is true, thus first check the nots and then toffoli (and):
qc.cx(q[0], q[2])
qc.cx(q[1], q[2])
qc.ccx(q[0], q[1], q[2])
Nor Gate
The Nor gate is the negation of Or gate:
qc.cx(q[0], q[2])
qc.cx(q[1], q[2])
qc.ccx(q[0], q[1], q[2])
qc.x(q[2])
Half Adder --- Results
qc.initialize([1,0], 0)
qc.initialize([1,0], 1)
print(count)
-> {'00': 1000}
qc.initialize([1,0], 0)
qc.initialize([0,1], 1)
-> {'01': 1000}
qc.initialize([0,1], 0)
qc.initialize([1,0], 1)
-> {'01': 1000}
qc.initialize([0,1], 0)
qc.initialize([0,1], 1)
-> {'10': 1000}
Full Adder
The state is initialized to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |0\rangle} , thus to set it to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle} we may initialize it or use X Gate.
##Define registers and a quantum circuit
q = QuantumRegister(4)
c = ClassicalRegister(2)
qc = QuantumCircuit(q,c)
#
#qc.initialize([1,0], 0)
#qc.initialize([0,1], 1)
#qc.initialize([1,0], 2)
qc.x(q[0])
qc.x(q[2])
##AND -- carry
qc.ccx(q[0], q[1], q[3])
qc.cx(q[0], q[1])
qc.ccx(q[1], q[2], q[3])
qc.cx(q[1], q[2])
qc.cx(q[0], q[1])
##Sum
qc.measure(q[2], c[0])
##Carry out
qc.measure(q[3], c[1])
Oops 😕! Result did not match expected values Please review your answer and try again.:
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import IBMQ, Aer, execute
##Define registers and a quantum circuit
q = QuantumRegister(5)
c = ClassicalRegister(2)
qc = QuantumCircuit(q,c)
#
qc.initialize([1,0], 0)
qc.initialize([0,0], 1)
qc.initialize([1,0], 2)
##AND -- carry
qc.ccx(q[0], q[1], q[4])
qc.ccx(q[0], q[2], q[4])
qc.ccx(q[1], q[2], q[4])
qc.barrier()
##XOR - sum
qc.cx(q[0], q[3])
qc.cx(q[1], q[3])
qc.cx(q[2], q[3])
qc.barrier()
emulator = Aer.get_backend('qasm_simulator')
job = execute(qc, emulator, shots=2048 )
hist = job.result().get_counts()
plot_histogram(hist)
##Sum
qc.measure(q[3], c[0])
##Carry out
qc.measure(q[4], c[1])
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
result = job.result()
count =result.get_counts()
print(count)
qc.draw(output='mpl')
Results
Results for the second case:
qc.initialize([0,1], 0)
qc.initialize([0,1], 1)
qc.initialize([0,1], 2)
-> {'11': 1000}
qc.initialize([0,1], 0)
qc.initialize([0,1], 1)
qc.initialize([1,0], 2)
-> {'10': 1000}
qc.initialize([0,1], 0)
qc.initialize([1,0], 1)
qc.initialize([0,1], 2)
-> {'10': 1000}
qc.initialize([0,1], 0)
qc.initialize([1,0], 1)
qc.initialize([1,0], 2)
-> {'01': 1000}
qc.initialize([1,0], 0)
qc.initialize([0,1], 1)
qc.initialize([0,1], 2)
-> {'10': 1000}
qc.initialize([1,0], 0)
qc.initialize([0,1], 1)
qc.initialize([1,0], 2)
-> {'01': 1000}
qc.initialize([1,0], 0)
qc.initialize([1,0], 1)
qc.initialize([0,1], 2)
-> {'01': 1000}
qc.initialize([1,0], 0)
qc.initialize([1,0], 1)
qc.initialize([1,0], 2)
-> {'00': 1000}
References
https://www.quantum-inspire.com/kbase/full-adder/
https://lahirumadushankablog.wordpress.com/2020/02/04/quantum-half-adder-and-full-adder/
https://agentanakinai.wordpress.com/2019/08/31/quantum-full-adder/
https://medium.com/@sashwat.anagolum/arithmetic-on-quantum-computers-addition-7e0d700f53ae
https://docs.microsoft.com/en-us/quantum/user-guide/libraries/standard/algorithms