Pascal's Triangle
Introduction
Binomial expansion
Pascal's triangle

The coefficients of binomial expansion can be easily seen from the Pascal triangle. The number is a sum of the two numbers above it.
Pascal's triangle: Negative right
This can be extended to negative numbers easily.

Now, instead of expanding , we will use , where is a negative integer. The exponent of each terms grows when going to left. We get according to the Pascal triangle
And by Taylor series (expansion at Laurent series) we get
- https://www.wolframalpha.com/input?i=series%28+%281%2Bx%29%5E%28-1%29+%29
- https://www.wolframalpha.com/input?i=series%28+%281%2Bx%29%5E%28-2%29+%29
- https://www.wolframalpha.com/input?i=series%28+%281%2Bx%29%5E%28-3%29+%29
Pascal's triangle: Negative left
The triangle can be extended to the left also, but it is symmetric to the earlier.
Pascal's triangle: half-integers
Newton: Find the area of the curve , because it is a quarter of a unit circle . He couldn't do that, so he took some other powers, and calculated the areas following Wallis and Fermat method that was known:
Failed to parse (unknown function "\x"): {\displaystyle \begin{align} y_0 &= (1-x^2)^{0/2} = (1-x^2)^0 = 1 &&\to && A(y_0) = x \\ y_1 &= (1-x^2)^{1/2} \\ y_2 &= (1-x^2)^{2/2} = 1-x^2 &&\to && A(y_2) = x - \frac13 x^3 \\ y_3 &= (1-x^2)^{3/2} \\ y_4 &= (1-x^2)^{4/2} = (1-x^2)^2 = 1 - 2x^2 + x^4 &&\to && A(y_4) = x - \frac23 x^3 + \frac15 x^5 \\ y_5 &= (1-x^2)^{5/2} \\ y_6 &= (1-x^2)^{6/2} = (1-x^2)^3 = 1 - 3x^2 + 3x^4 -x^6 &&\to && A(y_6) = x - x^3 + \frac35 x^5 - \frac17x^7 = \x - \frac33 x^3 + \frac35 x^5 - \frac17x^7 \end{align} }
Newton noted that
- the first term is always . He assumed that that is true also for half-integer numbers
- The denominator is always an odd integer
- the second term is , , , , etc. Thus, because the numerator of the second term is separated by he assumed that when adding the half-integers into the list, the separation will be , also . So, this will give the the first and second term half-integer to be