Introduction
Error creating thumbnail: convert-im6.q16: unrecognized color `context-fill' @ warning/color.c/GetColorCompliance/1057. convert-im6.q16: non-conforming drawing primitive definition `fill' @ error/draw.c/RenderMVGContent/4414. Dipole antennas and transmission coefficient. See the svg file
Antenn system.
Lähetin, johto, antenni, jne. https://www.antenna-theory.com/tutorial/txline/transmissionline.php
https://www.worldradiohistory.com/BOOKSHELF-ARH/Technology/Rider-Books/R-F%20Transmission%20Lines%20-%20Alexander%20Schure.pdf
Transmission line, general case
The (long) transmission line is modeled as Z 0 . If the frequency (wavelength) of the source is too large (small) compared to dimensions of the system, it need to be considered in more detailed. See also the svg file.
The physical realizations of the transmission lines are usually coaxial cables, twisted cables or twin lead cables.
The system is analyzed as being differential short pieces. The conductance
G
{\displaystyle G}
is the conductance between the two wires, which exists because of the high frequency.
If a transmission line has a length greater than about 10% of a wavelength, then the line length will noticeably affect the circuit's impedance. The equation in the above image can be written as
∂
v
d
x
=
−
L
∂
i
∂
t
−
R
i
∂
i
d
x
=
−
C
∂
v
∂
t
−
G
v
{\displaystyle {\begin{aligned}{\frac {\partial v}{dx}}&=-L{\frac {\partial i}{\partial t}}-Ri\\{\frac {\partial i}{dx}}&=-C{\frac {\partial v}{\partial t}}-Gv\end{aligned}}}
and these two is easy to combine, and it gives the second degree dy
∂
2
v
d
x
2
−
L
C
∂
2
v
∂
t
2
=
(
R
C
+
G
L
)
∂
v
∂
t
+
G
R
v
{\displaystyle {\frac {\partial ^{2}v}{dx^{2}}}-LC{\frac {\partial ^{2}v}{\partial t^{2}}}=(RC+GL){\frac {\partial v}{\partial t}}+GRv}
and similar equation to i . Lets solve those.
Lossless transmission
If wire resistance and insulation conductance can be neglected, the model depends only on L and C elements. Thus, we have two similar wave equations for v and i (only for v is shown)
∂
v
∂
t
2
−
v
^
2
∂
v
∂
x
2
=
0
{\displaystyle {\frac {\partial v}{\partial t^{2}}}-{\hat {v}}^{2}{\frac {\partial v}{\partial x^{2}}}=0}
where
v
^
=
(
L
C
)
−
1
/
2
{\displaystyle {\hat {v}}=(LC)^{-1/2}}
.
The solutions to the above equations is the sum of forward and backward traveling (reflected) waves:
v
(
z
,
t
)
=
v
+
e
−
α
z
e
ı
(
ω
t
−
γ
z
)
+
v
−
e
α
z
e
ı
(
ω
t
+
γ
z
)
{\displaystyle v(z,t)=v^{+}e^{-\alpha z}e^{\imath (\omega t-\gamma z)}+v^{-}e^{\alpha z}e^{\imath (\omega t+\gamma z)}}
and if we assume that
α
=
0
{\displaystyle \alpha =0}
we have the telegraphers equations https://en.wikipedia.org/wiki/Telegrapher's_equations
v
(
z
,
t
)
=
v
+
e
ı
(
ω
t
−
γ
z
)
+
v
−
e
ı
(
ω
t
+
γ
z
)
{\displaystyle v(z,t)=v^{+}e^{\imath (\omega t-\gamma z)}+v^{-}e^{\imath (\omega t+\gamma z)}}
and a similar for
i
=
i
(
z
,
t
)
{\displaystyle i=i(z,t)}
. If we replace $i$ by Ohm law, we get
i
(
z
,
t
)
=
v
+
Z
0
e
ı
(
ω
t
−
γ
z
)
+
v
−
Z
0
e
ı
(
ω
t
+
γ
z
)
=
v
+
Z
0
e
ı
(
ω
t
−
γ
z
)
(
1
−
v
−
v
+
e
ı
(
2
γ
z
)
)
{\displaystyle i(z,t)={\frac {v^{+}}{Z_{0}}}e^{\imath (\omega t-\gamma z)}+{\frac {v^{-}}{Z_{0}}}e^{\imath (\omega t+\gamma z)}={\frac {v^{+}}{Z_{0}}}e^{\imath (\omega t-\gamma z)}\left(1-{\frac {v^{-}}{v^{+}}}e^{\imath (2\gamma z)}\right)}
The fraction
v
−
v
+
{\displaystyle {\frac {v^{-}}{v^{+}}}}
is called reflection coefficient
Γ
{\displaystyle \Gamma }
v
−
v
+
=
Γ
e
ı
ϕ
z
=
Z
L
−
Z
0
Z
L
+
Z
0
{\displaystyle {\frac {v^{-}}{v^{+}}}=\Gamma e^{\imath \phi _{z}}={\frac {Z_{L}-Z_{0}}{Z_{L}+Z_{0}}}}
which gives
i
(
z
,
t
)
==
v
+
Z
0
e
ı
(
ω
t
−
γ
z
)
(
1
−
Γ
e
ı
(
ϕ
z
+
2
γ
z
)
)
{\displaystyle i(z,t)=={\frac {v^{+}}{Z_{0}}}e^{\imath (\omega t-\gamma z)}\left(1-\Gamma e^{\imath (\phi _{z}+2\gamma z)}\right)}
The characteristic impedance is
Thus we have
d
2
v
d
L
2
=
γ
2
v
{\displaystyle {\frac {d^{2}v}{dL^{2}}}=\gamma ^{2}v}
and similar for the current. The constant
γ
2
=
(
R
+
ı
ω
L
)
(
G
+
ı
ω
C
)
{\displaystyle \gamma ^{2}=(R+\imath \omega L)(G+\imath \omega C)}
.
Z
0
=
v
+
i
+
=
−
v
−
i
−
=
R
′
+
ı
ω
L
′
G
′
+
ı
ω
C
′
{\displaystyle Z_{0}={\frac {v^{+}}{i^{+}}}=-{\frac {v^{-}}{i^{-}}}={\sqrt {\frac {R'+\imath \omega L'}{G'+\imath \omega C'}}}}
For lossless line
R
′
=
G
′
=
0
{\displaystyle R'=G'=0}
and for distortionless line
R
′
/
L
′
=
G
′
/
C
′
{\displaystyle R'/L'=G'/C'}
. The voltage reflection coefficient
Γ
{\displaystyle \Gamma }
Γ
=
v
−
v
+
=
−
i
−
i
+
=
Z
L
−
Z
0
Z
L
+
Z
0
{\displaystyle \Gamma ={\frac {v^{-}}{v^{+}}}=-{\frac {i^{-}}{i^{+}}}={\frac {Z_{L}-Z_{0}}{Z_{L}+Z_{0}}}}
where
Z
0
{\displaystyle Z_{0}}
is the characteristic impedance of transient line, and
Z
L
{\displaystyle Z_{L}}
is the impedance of load (antenna). If
Z
L
=
Z
0
{\displaystyle Z_{L}=Z_{0}}
, then the line is perfectly matched , and there is no mismatch loss and all power is transferred to the load (antenna).
An open circuit:
Z
L
=
∞
{\displaystyle Z_{L}=\infty }
and
Γ
=
+
1
{\displaystyle \Gamma =+1}
.
A short circuit:
Z
L
=
0
{\displaystyle Z_{L}=0}
and
Γ
=
−
1
{\displaystyle \Gamma =-1}
, and a phase reversal of the reflected voltage wave.
A matched load:
Z
L
=
Z
0
{\displaystyle Z_{L}=Z_{0}}
, and
Γ
=
0
{\displaystyle \Gamma =0}
and no reflections.
The voltage standing wave ratio or VSWR
VSWR
=
|
V
|
max
|
|
V
|
min
|
=
1
+
|
Γ
|
1
−
|
Γ
|
{\displaystyle {\text{VSWR}}={\frac {|V|_{\text{max}}}{||V|_{\text{min}}|}}={\frac {1+|\Gamma |}{1-|\Gamma |}}}
Siirtolinja (transmission line). Impedanssi. Koaksaalikaapelin impedanssi muodostuu sen kapasitiivisestä rakenteesta. Ei juuri resistiivistä häviötä (impedanssia) https://electronics.stackexchange.com/questions/543100/derivation-of-resistance-of-coaxial-cable . Koaksaalikaapelin εr
76.7 Ω
30 Ω
The impedance of a centre-fed dipole antenna in free space is 73 Ω, so 75 Ω coax is commonly used for connecting shortwave antennas to receivers.
Sometimes 300 Ω folded dipole antenna => 4:1 balun transformer is used.
twin-lead transmission lines: the characteristic impedance of is roughly 300 Ω.
Feeding length.
Some transmission lines are
Coaxial cable
Two-wire cable
Microstrip line
. . .
Skin Effect
The skin effect
δ
{\displaystyle \delta }
. The higher the frequency, the more the
currents are confined to the surface.
Balun
Velocity factor
Caption text
Velocity factor
Line type
0.95
Ladder line
0.82
Twin-lead
0.79
coaxial cable (foam dielectric)
0.75
RG-6 and RG-8 coaxial (thick)
0.66
RG-58 and RG-59 coaxial (thin)
Something else
References