High frequency transmission lines

From wikiluntti

Introduction

Teoriaa: Systeemi

Error creating thumbnail: convert-im6.q16: unrecognized color `context-fill' @ warning/color.c/GetColorCompliance/1057. convert-im6.q16: non-conforming drawing primitive definition `fill' @ error/draw.c/RenderMVGContent/4414.
Dipole antennas and transmission coefficient. See the svg file

Antenn system.

Lähetin, johto, antenni, jne. https://www.antenna-theory.com/tutorial/txline/transmissionline.php

https://www.worldradiohistory.com/BOOKSHELF-ARH/Technology/Rider-Books/R-F%20Transmission%20Lines%20-%20Alexander%20Schure.pdf

Transmission line

If a transmission line has a length greater than about 10% of a wavelength, then the line length will noticeably affect the circuit's impedance. The equation in the above image can be written as Failed to parse (syntax error): {\displaystyle \begin{align*} \frac{\doo v}{dx} &= -L\frac{\doo i}{\doo t} - Ri \\ \frac{\doo i}{dx} &= -C\frac{\doo v}{\doo t} - Gv \end{align*} }


The solutions to the above equations is the sum of forward and backward traveling (reflected) waves: and if we assume that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha =0} we have the telegraphers equations https://en.wikipedia.org/wiki/Telegrapher's_equations

and a similar for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=i(z,t)} . If we replace $i$ by Ohm law, we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i(z,t) = \frac{v^+}{Z_0} e^{\imath (\omega t - \gamma z) } + \frac{v^-}{Z_0} e^{\imath (\omega t +\gamma z)} = \frac{v^+}{Z_0} e^{\imath (\omega t - \gamma z)} \left( 1 - \frac{v^-}{v^+}e^{\imath(2\gamma z)} \right) }

The fraction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{v^-}{v^+}} is called reflection coefficient Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{v^-}{v^+} = \Gamma e^{\imath \phi_z} = \frac{Z_L - Z_0}{Z_L + Z_0}}

which gives

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i(z,t) = = \frac{v^+}{Z_0} e^{\imath (\omega t - \gamma z)} \left( 1 - \Gamma e^{\imath(\phi_z +2\gamma z)} \right) }



The characteristic impedance is

Thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2 v}{dL^2} = \gamma^2 v } and similar for the current. The constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^2 = (R+\imath \omega L)(G+\imath \omega C)} .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0 = \frac{v^+}{i^+} = - \frac{v^-}{i^-} = \sqrt{ \frac{R' + \imath \omega L'}{G' + \imath \omega C'}} }

For lossless line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R' = G' = 0} and for distortionless line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R'/L' = G'/C'} . The voltage reflection coefficient Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma = \frac{v^-}{v^+} = - \frac{i^-}{i^+} = \frac{Z_L - Z_0}{Z_L + Z_0} } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0} is the characteristic impedance of transient line, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_L} is the impedance of load (antenna). If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_L= Z_0} , then the line is perfectly matched, and there is no mismatch loss and all power is transferred to the load (antenna).

  • An open circuit: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_L = \infty} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma = +1} .
  • A short circuit: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_L = 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma = -1} , and a phase reversal of the reflected voltage wave.
  • A matched load: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_L = Z_0} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma = 0} and no reflections.

The voltage standing wave ratio or VSWR

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{VSWR} = \frac{|V|_\text{max}}{||V|_\text{min}|} = \frac{1 + |\Gamma|}{1 - |\Gamma|} }


Siirtolinja (transmission line). Impedanssi. Koaksaalikaapelin impedanssi muodostuu sen kapasitiivisestä rakenteesta. Ei juuri resistiivistä häviötä (impedanssia) https://electronics.stackexchange.com/questions/543100/derivation-of-resistance-of-coaxial-cable. Koaksaalikaapelin εr

  • 76.7 Ω
  • 30 Ω
  • The impedance of a centre-fed dipole antenna in free space is 73 Ω, so 75 Ω coax is commonly used for connecting shortwave antennas to receivers.
  • Sometimes 300 Ω folded dipole antenna => 4:1 balun transformer is used.

twin-lead transmission lines: the characteristic impedance of is roughly 300 Ω.

Feeding length.

Some transmission lines are

  • Coaxial cable
  • Two-wire cable
  • Microstrip line
  • . . .

Skin Effect

The skin effect Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} . The higher the frequency, the more the currents are confined to the surface.

Balun

Velocity factor

Caption text
Velocity factor Line type
0.95 Ladder line
0.82 Twin-lead
0.79 coaxial cable (foam dielectric)
0.75 RG-6 and RG-8 coaxial (thick)
0.66 RG-58 and RG-59 coaxial (thin)

Something else

References