Pandas Read CSV and animate the data

From wikiluntti

Introduction

Read CSV data, filter, interpolate and smooth it, and the animate the plotting. The file is File:Convergence dataOnly.csv.

Read and Interpolate

import matplotlib.pyplot as plt
import pandas  as pd
import numpy as np

#Read, transpose, sort, drop and set the index to be the number of tetrahedrons
#and drop the columns with zero values and some parameters
df = pd.read_csv("convergence_dataOnly.csv" ).T
df.columns = ( df.iloc[0] + " " + df.iloc[1] )
df = df[3:].sort_values("Tetrahedrons n")
df.set_index("Tetrahedrons n", inplace=True)
df = df.drop('Displacement magnitude max', axis=1)
df = df.drop('von Mises Stress max', axis=1)
df = df.drop('Max Shear Stress max', axis=1)
df = df.drop('Nodes n', axis=1)
df = df.drop('Triangles n', axis=1)

#Convert values and index to numeric
df= df.apply(pd.to_numeric)
df.index = pd.to_numeric( df.index, errors='coerce' )

# Interpolate # Need to drop the one with the same number of tetrahedrons
mask = np.ones( len(df), dtype=bool)
mask[2] = False
df = df[mask]

#Get the percentage
df = df.divide( df.iloc[9] )
print(df)

df_i = df.reindex(df.index.union(np.linspace(df.index.min(),df.index.max(), df.index.shape[0]*10)))  # insert 10 NaN points between existing ones
df_i = df_i.interpolate('pchip', order=2)  # fill the gaps with values
df_i.plot()  # draw new Dataframe

Animate the data

References