Pascal's Triangle: Difference between revisions

From wikiluntti
Line 46: Line 46:
\end{align}
\end{align}
</math>
</math>
And by Taylor series (expansion at <math>x=-1</math>Laurent series) we get
* https://www.wolframalpha.com/input?i=series%28+%281%2Bx%29%5E%28-1%29+%29
* https://www.wolframalpha.com/input?i=series%28+%281%2Bx%29%5E%28-2%29+%29
* https://www.wolframalpha.com/input?i=series%28+%281%2Bx%29%5E%28-3%29+%29

Revision as of 20:09, 19 October 2022

Introduction

Binomial expansion

Pascal's triangle

Pascal's Triangle

The coefficients of binomial expansion can be easily seen from the Pascal triangle. The number is a sum of the two numbers above it.

Pascal's triangle: Negative 1

This can be extended to negative numbers easily.

Pascal triangle extended to negative values

Now, instead of expanding , we will use , where is a negative integer. The exponent of each terms grows when going to left. We get according to the Pascal triangle

And by Taylor series (expansion at Laurent series) we get