Eksperimentti: hyppykorkeuden määrittäminen impulssilla

From wikiluntti
Revision as of 18:10, 3 May 2022 by Mol (talk | contribs) (→‎Theory)

Introduction

Force exerted on the force plate

Jumping on the force plate you can feel the force. We use time of flight method to estimate the height of the jump.

Theory

Impulse . Actually Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta v} is our takeoff speed because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1=0} , and we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta v = v_{0} = \frac{J}{m} = \frac1m \int F dt} . Because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = s_0 + v_0 t + \tfrac12 at^2} and thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = v_0 t - \tfrac12 gt^2} because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_0=0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=-g = -9.81m/s^2} . However, for the velocity we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = v_0 - gt} and at the maximum height we have that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=0} , and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0 = gt} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\frac{v_0}{g}} . Combining these two we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} h &= v_0 t - \tfrac12 gt^2 \\ &= v_0 \tfrac{v_0}g - \tfrac12 g\left( \frac{v_0}g \right)^2 \\ &= \frac{v_0^2}{g} - \tfrac12 \frac{v_0^2}{g} \\ &= \frac{v_0^2}{2g} \\ &= \frac{J^2}{2gm^2} = \frac{1}{2g} \left( \frac Jm \right)^2 \end{align} }

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J/m = v_0} , and thus the equation gives the correct equation.

Example

The example gives

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} m &= 880 N /9.81 = 89.7 kg \\ J &= 700 Ns - 89.7 kg \times 9.81 \times 0.2895 s = 700 Ns - 254.75 Ns = 445.25 Ns \end{align} }

and thus we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} h &= \frac{J^2}{2gm^2} \\ &= \frac{(445.25 Ns)^2}{2 \times 9.81 m/s^2 \times (89.7 kg)^2 } \\ &= \frac{198 247. 5625}{315 728.5716} \\ &= 0.63 m\\ \end{align} }

Example 2: Zero the force plate

References

https://www.thehoopsgeek.com/the-physics-of-the-vertical-jump/

https://www.brunel.ac.uk/~spstnpl/LearningResources/VerticalJumpLab.pdf