Brachistochrone
Introduction
To find the shape of the curve which the time is shortest possible. . .
We use WxMaxima to do the calculus part.
Theory
Variational Calculus and Euler--Lagrange Equation
The time from to is where is the Pythagorean distance measure and is determined from the the law of conservation of energy . giving . Plugging these in, we get , where is the function subject to variational consideration.
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation is satisfied.
No Friction
Since does not depend on , we may use the simplified E--L formula Constant. We get
.
Thus, we have
So we have and multiplying this with the denominator and rearring, we have by redefining the constant. The standard solution to this equation is given by
and is the equation of a cycloid.
The same
energy : 1/2*m*v^2 = m*g*y;
v_sol : solve( energy, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y,t)^2)/v_sol );
doof_dooyp : diff( EL_f, 'diff(y,t));
EL: EL_f - 'diff(y,t)*doof_dooyp = C;
radcan(%);
EL_dy : solve(EL, y);
ode2(EL_dy[1]^2,y,t);
but the ode2 solver cannot handle the nonlinear differential equation.
Rolling Ball: Angular momentum but no radius
The rotational energy is and by applying non-slipping condition we get . Note that actually the ball is rolling on a curve, and thus the given slipping condition is only an approximation. The correct case is shown below in Chapter . ..
For the simplified case, the calculation is similar to the previous one, and using Maxima, we get
energy : 1/2*m*v^2 + 1/2*I*v^2/r^2= m*g*y;
. . .
gives
and thus only the constant differs from the case with no angular momentum.
Friction
The normal force follows the path, and thus is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec T = \frac{dx}{ds}\vec x + \frac{dy}{ds} \vec y } , but The friction depends on the normal force of the path. The normal force is perpendicular to the previous, thus we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec N = - \frac{dy}{ds}\vec x + \frac{dx}{ds} \vec y }
The conservation of energy does not apply here, but we have Newton's Second Law, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec F = m \frac{d \vec v}{dt}} . We need the components along the curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} . Thus we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \vec F &= \vec G - \vec F_\mu \\ &= mg \frac{dy}{ds} - \mu mg \frac{dx}{ds} \end{align} }
Clearly, for the left hand side of NII we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{dv}{dt} = m \frac{dv}{ds}\frac{ds}{dt} = m \frac{dv}{ds} v = mv \frac{dv}{ds} = m\frac12 \frac {d v^2}{ds} } , and by including the differential part only, we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac12 v^2 &= g( y - \mu x ) \\ v&= \sqrt{2g(y-\mu x)} \end{align} }
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} for the Euler--Lagrange equation is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f = \sqrt{ \frac{1+y'^{2}}{2g(y-\mu x)} } }
Euler--Lagrange
NII : 1/2*v^2 = g*(y(x)-mu*x);
v_sol : solve( NII, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y(x),x)^2)/v_sol );
df_dy : diff(EL_f, y(x));
df_dyp : diff(EL_f, 'diff(y(x),x));
d_dx : diff( df_dyp, x);
EL : df_dy - d_dx = 0;
Elrad : radcan( EL );
num( lhs(ELrad) )/sqrt(2)/sqrt(y(x)-mu*x)=0;
ratsimp(%);
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left( 2 \mu x-2 \operatorname{y}(x)\right) \, \left( \frac{{{d}^{2}}}{d {{x}^{2}}} \operatorname{y}(x)\right) -\mu {{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{3}}-{{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{2}}-\mu \left( \frac{d}{d x} \operatorname{y}(x)\right) -1=0 \\ 2 \left( y - \mu x \right) y'' + \left( 1+ \left( y' \right)^2 \right) \left( 1 + \mu y' \right) =0 \end{align} }
Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d }{dx}\left( y(x) - \mu x \right) } .
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \frac{y'-\mu}{y-\mu x} = \frac{2(y'-\mu) y''}{(1+y'^{2})(1+\mu y')} }
The right hand side can be integrated:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \int \frac{y'-\mu}{y-\mu x} dx = -\ln |y - \mu x| + C_1 }
This can be reduced to
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \operatorname{y}(x)-\mu x\right) \, \left( {{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{2}}+1\right) = C\, {{\left( \mu \left( \frac{d}{d x} \operatorname{y}(x)\right) +1\right) }^{2}} }
Rolling Ball with radius
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega = \frac{r_\text{curve}+r}{r}\frac{d \alpha}{d t} - \frac{d\alpha}{dt} = \frac{\rho}{r} \frac{d\alpha}{dt} = \frac{v}{r} }
The conservation of energy:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle mgy = \frac12 mv^2 + \frac12 \frac25 m r^2 v^2/r^2 }
Beltrami Indentity
E-L states: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial L}{\partial y} = \frac{d}{dx}\frac{\partial L}{\partial y'}} , but Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dL}{dx} = y'\frac{\partial L}{\partial y} + y''\frac{\partial L}{\partial y'} + \frac{\partial L}{\partial x}} , and now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial L/\partial x = 0} and by substituting the first result, we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d L}{d x} - ( y'\frac{d}{dx} \frac{\partial L}{\partial y'} + y''\frac{\partial L}{\partial y'} ) = 0 \\ \Leftrightarrow \\ \frac{dL}{dx} - \frac{d}{dx} \left( y' \frac{\partial L}{\partial y'} \right) = \frac{d}{dx}\left( L - y' \frac{\partial L}{\partial y'}\right) = 0 \end{align} }
and thus Beltrami follows.
References
https://mathworld.wolfram.com/BrachistochroneProblem.html
https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/
http://hades.mech.northwestern.edu/images/e/e6/Legeza-MechofSolids2010.pdf
https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf
https://mate.uprh.edu/~urmaa/reports/brach.pdf The Nonlinear Brachistochrone Problem with Friction Pablo V. Negr´on–Marrero∗ and B´arbara L. Santiago–Figueroa
https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7
https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf BASICS OF CALCULUS OF VARIATIONS MARKUS GRASMAIR
http://www.doiserbia.nb.rs/img/doi/0354-5180/2012/0354-51801204697M.pdf
http://info.ifpan.edu.pl/firststep/aw-works/fsV/parnovsky/parnovsky.pdf Some Generalisations of Brachistochrone Problem. A.S. Parnovsky
[https://arxiv.org/pdf/1604.03021.pdf Tautochrone and Brachistochrone Shape Solutions for Rocking Rigid Bodies. Patrick Glaschke April 12, 2016]
https://issuu.com/nameou/docs/math_seminar_paper A complete detailed solution to the brachistochrone problem. N. H. Nguyen.
https://arxiv.org/pdf/1908.02224.pdf Brachistochrone on a velodrome. GP Benham, C Cohen, E Brunet and C Clanet
https://arxiv.org/pdf/1712.04647.pdf On the brachistochrone of a fluid-filled cylinder. Srikanth Sarma Gurram, Sharan Raja, Pallab Sinha Mahapatra and Mahesh V. Panchagnula.
https://arxiv.org/pdf/1001.2181.pdf A Detailed Analysis of the Brachistochrone Problem R.Coleman
https://www.jstor.org/stable/2974953?seq=1#metadata_info_tab_contents Exploring the Brachistochrone Problem. LaDawn Haws and Terry Kiser.