Brachistochrone

From wikiluntti
Revision as of 19:05, 16 February 2021 by Mol (talk | contribs) (→‎No Friction)

Introduction

To find the shape of the curve which the time is shortest possible. . .

Theory

The time from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_a} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_b} is where is the Pythagorean distance measure and is determined from the the law of conservation of energy . giving . Plugging these in, we get , where is the function subject to variational consideration.

According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation is satisfied.

No Friction

We get . Since does not depend on , we may use the simplified E--L formula Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f-y' \frac{\partial f}{\partial y'}= \text{Constant}} .

Thus, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f - y' \frac{\partial f}{\partial y'} = f' - y' \frac{2y'}{\sqrt{2gy}} \frac1 {\sqrt{1+y'^{2}}} = }

Friction

Rolling Ball

References

https://mathworld.wolfram.com/BrachistochroneProblem.html

https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/