Water molecule bond length

From wikiluntti

Introduction

Classical Mechanics

Newton Equations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = ma} where . The system is 1D, thus gradient will be differential, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F= - \frac{d V}{dx}} .

The mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} should be the reduced mass of the oxygen--hydrogen system, but we use mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=1} here.

Potential Function

Lennard--Jones potential with dimensionless parameters for TIPS model:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x) = 4 \left[ \left( \frac1x\right)^{12} - \left( \frac1 x\right)^6 \right] }

where the distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is given in Ångstroms.

Integration

The finite differences (Euler method) are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} v(t) &= \frac{x(t+\Delta t) - x(t)}{\Delta t} \\ a(t) &= \frac{v(t+\Delta t) - v(t)}{\Delta t} \end{align} } and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a(t) = -\frac{\frac{d}{dx}(V(x(t)))}{m} }


Velocity Verlet Algorithm

A very good and easy to implement integration method is velocity Verlet:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\ v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t \end{align} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a(t) = - \frac1m \frac{d}{dx}V(x)} is given at Section . . .

Temperature/ Initial distribution

The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}

Results

Issues

1D statement