Brachistochrone

From wikiluntti

Introduction

To find the shape of the curve which the time is shortest possible. . .

We use WxMaxima to do the calculus part.

Theory

Variational Calculus and Euler--Lagrange Equation

The time from to is where is the Pythagorean distance measure and is determined from the the law of conservation of energy . giving . Plugging these in, we get , where is the function subject to variational consideration.

According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation is satisfied.

No Friction

Since does not depend on , we may use the simplified E--L formula Constant. We get

.

Thus, we have

So we have and multiplying this with the denominator and rearring, we have by redefining the constant. The standard solution to this equation is given by

and is the equation of a cycloid.

The same

energy : 1/2*m*v^2 = m*g*y;
v_sol : solve( energy, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y,t)^2)/v_sol );
doof_dooyp : diff( EL_f, 'diff(y,t));
EL: EL_f - 'diff(y,t)*doof_dooyp = C;
radcan(%);
EL_dy : solve(EL, y);
ode2(EL_dy[1]^2,y,t);

but the ode2 solver cannot handle the nonlinear differential equation.

Rolling Ball: Angular momentum but no radius

The rotational energy is and by applying non-slipping condition we get . The calculation is similar, and using Maxima, we get

energy : 1/2*m*v^2 + 1/2*I*v^2/r^2= m*g*y;
. . .

gives

and thus only the constant differs from the case with no angular momentum.

Friction

The forces on the path. Actually the sliding particle is infinitemal small.

The normal force follows the path, and thus is given by , but The friction depends on the normal force of the path. The normal force is perpendicular to the previous, thus we have

The conservation of energy does not apply here, but we have Newton's Second Law, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec F = m \frac{d \vec v}{dt}} . We need the components along the curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} . Thus we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \vec F &= \vec G - \vec F_\mu \\ &= mg \frac{dy}{ds} - \mu mg \frac{dx}{ds} \end{align} }

Clearly, for the left hand side of NII we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{dv}{dt} = mv \frac{dv}{ds} = m\frac12 \frac {d v^2}{ds}} , and by including the differential part only, we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac12 v^2 &= g( y - \mu x ) \\ v&= \sqrt{2g(y-\mu x)} \end{align} }

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} for the Euler--Lagrange equation is

Euler--Lagrange

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial f}{\partial y} - \frac{d}{dt}\frac{\partial f}{\partial y'} =0 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{\partial f}{\partial y} &= \sqrt{\frac{1+y'^{2}}{2g}} \frac{\partial}{\partial y} (y-\mu x)^{-1/2} \\ &= \sqrt{\frac{1+y'^{2}}{2g}} \frac{-1} { 2(y-\mu x)^{3/2} } \\ &= - \frac1{2(y-\mu x)} \sqrt{\frac{1+y'^{2}}{2g(y-\mu x)}} \\ \end{align} }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{\partial f}{\partial y'} &= \frac1{\sqrt{2g(y-\mu x)}} \frac{\partial}{\partial y} \sqrt{1+y'^{2}} \\ &= \frac{y' }{2\sqrt{2g(y-\mu x)} \sqrt{1+y'^{2}} } \\ \end{align} }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dt}\frac{\partial f}{\partial y'} &= \frac{-\left( 2 y''\sqrt{2g(y-\mu x)} \frac{y'}{\sqrt{1+y'^{2}}} + \sqrt2 g ( y' - \mu x' )\frac{\sqrt{1+y'^{2}}}{\sqrt{g(y-\mu x)}} \right)y' + 2\sqrt2 y''\sqrt{y-\mu x}\sqrt{1+y'^{2}} } {\left( 2 \sqrt{ 2g(y- \mu x) }\sqrt{1+y'^{2}} \right)^2 } \end{align} }

Plugging these into EL we have


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} - \frac1{2(y-\mu x)} \sqrt{\frac{1+y'^{2}}{2g(y-\mu x)}} &= \frac{-\left( 2 y''\sqrt{2g(y-\mu x)} \frac{y'}{\sqrt{1+y'^{2}}} + \sqrt2 g ( y' - \mu x' )\frac{\sqrt{1+y'^{2}}}{\sqrt{g(y-\mu x)}} \right)y' + 2\sqrt2 y''\sqrt{y-\mu x}\sqrt{1+y'^{2}} } {\left( 2 \sqrt{ 2g(y- \mu x) }\sqrt{1+y'^{2}} \right)^2 } \\ \\ - 4g \frac{ ( 1+y'^{2})^{3/2}}{ \sqrt{2g(y-\mu x)} } &= -\left( 2 y''\sqrt{2g(y-\mu x)} \frac{y'}{\sqrt{1+y'^{2}}} + \sqrt2 g ( y' - \mu x' )\frac{\sqrt{1+y'^{2}}}{\sqrt{g(y-\mu x)}} \right)y' + 2\sqrt2 y''\sqrt{y-\mu x}\sqrt{1+y'^{2}} \\ \end{align} }

Rolling Ball with radius

References

https://mathworld.wolfram.com/BrachistochroneProblem.html

https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/

http://hades.mech.northwestern.edu/images/e/e6/Legeza-MechofSolids2010.pdf

https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf

https://mate.uprh.edu/~urmaa/reports/brach.pdf

https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7

https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf