Introduction
To find the shape of the curve which the time is shortest possible. . .
We use WxMaxima to do the calculus part.
Theory
Variational Calculus and Euler--Lagrange Equation
The time from
P
a
{\displaystyle P_{a}}
to
P
b
{\displaystyle P_{b}}
is
t
=
∫
P
a
P
b
1
v
d
s
{\displaystyle t=\int _{P_{a}}^{P_{b}}{\frac {1}{v}}ds}
where
d
s
=
1
+
y
′
2
d
x
{\displaystyle ds={\sqrt {1+y'{^{2}}}}dx}
is the Pythagorean distance measure and
v
{\displaystyle v}
is determined from the the law of conservation of energy
1
2
m
v
2
=
m
g
y
{\displaystyle {\frac {1}{2}}mv^{2}=mgy}
.
giving
v
=
2
g
y
{\displaystyle v={\sqrt {2gy}}}
. Plugging these in, we get
t
=
∫
P
a
P
b
1
+
y
′
2
2
g
y
d
x
=
∫
P
a
P
b
f
d
x
{\displaystyle t=\int _{P_{a}}^{P_{b}}{\sqrt {\frac {1+y'^{2}}{2gy}}}dx=\int _{P_{a}}^{P_{b}}fdx}
, where
f
=
f
(
y
,
y
′
)
{\displaystyle f=f(y,y')}
is the function subject to variational consideration.
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation
∂
f
∂
y
−
d
d
x
∂
f
∂
y
′
=
0
{\displaystyle {\frac {\partial f}{\partial y}}-{\frac {d}{dx}}{\frac {\partial f}{\partial y'}}=0}
is satisfied.
No Friction
Since
f
{\displaystyle f}
does not depend on
x
{\displaystyle x}
, we may use the simplified E--L formula
f
−
y
′
∂
f
∂
y
′
=
{\displaystyle f-y'{\frac {\partial f}{\partial y'}}=}
Constant.
We get
∂
f
∂
y
′
=
∂
∂
y
′
1
+
y
′
2
2
g
y
=
1
2
g
y
∂
∂
y
′
1
+
y
′
2
=
2
y
′
2
g
y
1
2
1
+
y
′
2
{\displaystyle {\frac {\partial f}{\partial y'}}={\frac {\partial }{\partial y'}}{\sqrt {\frac {1+y'^{2}}{2gy}}}={\frac {1}{\sqrt {2gy}}}{\frac {\partial }{\partial y'}}{\sqrt {1+y'^{2}}}={\frac {2y'}{\sqrt {2gy}}}{\frac {1}{2{\sqrt {1+y'^{2}}}}}}
.
Thus, we have
f
−
y
′
∂
f
∂
y
′
=
1
+
y
′
2
2
g
y
−
y
′
2
2
g
y
1
+
y
′
2
=
C
{\displaystyle f-y'{\frac {\partial f}{\partial y'}}={\sqrt {\frac {1+y'{^{2}}}{2gy}}}-{\frac {y'{^{2}}}{{\sqrt {2gy}}{\sqrt {1+y'^{2}}}}}=C}
So we have
1
+
y
′
2
2
g
y
(
1
+
y
′
2
)
−
y
′
2
2
g
y
1
+
y
′
2
=
1
2
g
y
(
1
+
y
′
2
)
=
C
{\displaystyle {\frac {1+y'{^{2}}}{\sqrt {2gy(1+y'{^{2}})}}}-{\frac {y'{^{2}}}{{\sqrt {2gy}}{\sqrt {1+y'^{2}}}}}={\frac {1}{\sqrt {2gy(1+y'{^{2}})}}}=C}
and multiplying this with the denominator and rearring, we have
y
(
1
+
y
′
2
)
=
1
2
g
C
2
=
k
2
{\displaystyle y\left(1+y'^{2}\right)={\frac {1}{2gC^{2}}}=k^{2}}
by redefining the constant. The standard solution to this equation is given by
x
=
1
2
k
2
(
θ
−
sin
θ
)
y
=
1
2
k
2
(
1
−
cos
θ
)
{\displaystyle {\begin{aligned}x&={\frac {1}{2}}k^{2}(\theta -\sin \theta )\\y&={\frac {1}{2}}k^{2}(1-\cos \theta )\end{aligned}}}
and is the equation of a cycloid.
The same
energy : 1/2*m*v^2 = m*g*y;
v_sol : solve( energy, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y,t)^2)/v_sol );
doof_dooyp : diff( EL_f, 'diff(y,t));
EL: EL_f - 'diff(y,t)*doof_dooyp = C;
radcan(%);
EL_dy : solve(EL, y);
ode2(EL_dy[1]^2,y,t);
but the ode2 solver cannot handle the nonlinear differential equation.
Rolling Ball: Angular momentum but no radius
The rotational energy is
E
rot
=
1
2
I
ω
2
{\displaystyle E_{\text{rot}}={\frac {1}{2}}I\omega ^{2}}
and by applying non-slipping condition
v
=
ω
r
{\displaystyle v=\omega r}
we get
E
rot
=
v
2
2
r
2
I
{\displaystyle E_{\text{rot}}={\frac {v^{2}}{2r^{2}}}I}
. The calculation is similar, and using Maxima, we get
energy : 1/2*m*v^2 + 1/2*I*v^2/r^2= m*g*y;
. . .
gives
m
r
2
+
I
2
g
m
y
r
(
d
d
t
y
)
2
+
1
=
C
⇒
y
(
1
+
y
′
2
)
=
m
r
2
+
I
2
g
m
r
2
C
2
=
k
1
2
{\displaystyle {\begin{aligned}{\frac {\sqrt {m\,{{r}^{2}}+I}}{{\sqrt {2gmy}}r\,{\sqrt {{{\left({\frac {d}{dt}}y\right)}^{2}}+1}}}}=C&&\Rightarrow &&y(1+y'{^{2}})={\frac {mr^{2}+I}{2gmr^{2}C^{2}}}=k_{1}^{2}\end{aligned}}}
and thus only the constant
k
1
{\displaystyle k_{1}}
differs from the case with no angular momentum.
Friction
The forces on the path. Actually the sliding particle is infinitemal small.
The normal force follows the path, and thus is given by
T
→
=
d
x
d
s
x
→
+
d
y
d
s
y
→
{\displaystyle {\vec {T}}={\frac {dx}{ds}}{\vec {x}}+{\frac {dy}{ds}}{\vec {y}}}
, but The friction depends on the normal force of the path. The normal force is perpendicular to the previous, thus we have
N
→
=
−
d
y
d
s
x
→
+
d
x
d
s
y
→
{\displaystyle {\vec {N}}=-{\frac {dy}{ds}}{\vec {x}}+{\frac {dx}{ds}}{\vec {y}}}
The conservation of energy does not apply here, but we have Newton's Second Law,
F
→
=
m
d
v
→
d
t
{\displaystyle {\vec {F}}=m{\frac {d{\vec {v}}}{dt}}}
. We need the components along the curve
s
{\displaystyle s}
. Thus we have
F
→
=
G
→
−
F
→
μ
=
m
g
d
y
d
s
−
μ
m
g
d
x
d
s
{\displaystyle {\begin{aligned}{\vec {F}}&={\vec {G}}-{\vec {F}}_{\mu }\\&=mg{\frac {dy}{ds}}-\mu mg{\frac {dx}{ds}}\end{aligned}}}
Clearly, for the left hand side of NII we have
m
d
v
d
t
=
m
v
d
v
d
s
=
m
1
2
d
v
2
d
s
{\displaystyle m{\frac {dv}{dt}}=mv{\frac {dv}{ds}}=m{\frac {1}{2}}{\frac {dv^{2}}{ds}}}
, and by including the differential part only, we have
1
2
v
2
=
g
(
y
−
μ
x
)
v
=
2
g
(
y
−
μ
x
)
{\displaystyle {\begin{aligned}{\frac {1}{2}}v^{2}&=g(y-\mu x)\\v&={\sqrt {2g(y-\mu x)}}\end{aligned}}}
and
f
{\displaystyle f}
for the Euler--Lagrange equation is
f
=
1
+
y
′
2
2
g
(
y
−
μ
x
)
{\displaystyle f={\sqrt {\frac {1+y'^{2}}{2g(y-\mu x)}}}}
Euler--Lagrange
∂
f
∂
y
−
d
d
t
∂
f
∂
y
′
=
0
{\displaystyle {\frac {\partial f}{\partial y}}-{\frac {d}{dt}}{\frac {\partial f}{\partial y'}}=0}
∂
f
∂
y
=
1
+
y
′
2
2
g
∂
∂
y
(
y
−
μ
x
)
−
1
/
2
=
1
+
y
′
2
2
g
−
1
2
(
y
−
μ
x
)
3
/
2
=
−
1
2
(
y
−
μ
x
)
1
+
y
′
2
2
g
(
y
−
μ
x
)
{\displaystyle {\begin{aligned}{\frac {\partial f}{\partial y}}&={\sqrt {\frac {1+y'^{2}}{2g}}}{\frac {\partial }{\partial y}}(y-\mu x)^{-1/2}\\&={\sqrt {\frac {1+y'^{2}}{2g}}}{\frac {-1}{2(y-\mu x)^{3/2}}}\\&=-{\frac {1}{2(y-\mu x)}}{\sqrt {\frac {1+y'^{2}}{2g(y-\mu x)}}}\\\end{aligned}}}
∂
f
∂
y
′
=
1
2
g
(
y
−
μ
x
)
∂
∂
y
1
+
y
′
2
=
y
′
2
2
g
(
y
−
μ
x
)
1
+
y
′
2
{\displaystyle {\begin{aligned}{\frac {\partial f}{\partial y'}}&={\frac {1}{\sqrt {2g(y-\mu x)}}}{\frac {\partial }{\partial y}}{\sqrt {1+y'^{2}}}\\&={\frac {y'}{2{\sqrt {2g(y-\mu x)}}{\sqrt {1+y'^{2}}}}}\\\end{aligned}}}
d
d
t
∂
f
∂
y
′
=
−
(
2
y
″
2
g
(
y
−
μ
x
)
y
′
1
+
y
′
2
+
2
g
(
y
′
−
μ
x
′
)
1
+
y
′
2
g
(
y
−
μ
x
)
)
y
′
+
2
2
y
″
y
−
μ
x
1
+
y
′
2
(
2
2
g
(
y
−
μ
x
)
1
+
y
′
2
)
2
{\displaystyle {\begin{aligned}{\frac {d}{dt}}{\frac {\partial f}{\partial y'}}&={\frac {-\left(2y''{\sqrt {2g(y-\mu x)}}{\frac {y'}{\sqrt {1+y'^{2}}}}+{\sqrt {2}}g(y'-\mu x'){\frac {\sqrt {1+y'^{2}}}{\sqrt {g(y-\mu x)}}}\right)y'+2{\sqrt {2}}y''{\sqrt {y-\mu x}}{\sqrt {1+y'^{2}}}}{\left(2{\sqrt {2g(y-\mu x)}}{\sqrt {1+y'^{2}}}\right)^{2}}}\end{aligned}}}
Plugging these into EL we have
−
1
2
(
y
−
μ
x
)
1
+
y
′
2
2
g
(
y
−
μ
x
)
=
−
(
2
y
″
2
g
(
y
−
μ
x
)
y
′
1
+
y
′
2
+
2
g
(
y
′
−
μ
x
′
)
1
+
y
′
2
g
(
y
−
μ
x
)
)
y
′
+
2
2
y
″
y
−
μ
x
1
+
y
′
2
(
2
2
g
(
y
−
μ
x
)
1
+
y
′
2
)
2
−
4
g
(
1
+
y
′
2
)
3
/
2
2
g
(
y
−
μ
x
)
=
−
(
2
y
″
2
g
(
y
−
μ
x
)
y
′
1
+
y
′
2
+
2
g
(
y
′
−
μ
x
′
)
1
+
y
′
2
g
(
y
−
μ
x
)
)
y
′
+
2
2
y
″
y
−
μ
x
1
+
y
′
2
{\displaystyle {\begin{aligned}-{\frac {1}{2(y-\mu x)}}{\sqrt {\frac {1+y'^{2}}{2g(y-\mu x)}}}&={\frac {-\left(2y''{\sqrt {2g(y-\mu x)}}{\frac {y'}{\sqrt {1+y'^{2}}}}+{\sqrt {2}}g(y'-\mu x'){\frac {\sqrt {1+y'^{2}}}{\sqrt {g(y-\mu x)}}}\right)y'+2{\sqrt {2}}y''{\sqrt {y-\mu x}}{\sqrt {1+y'^{2}}}}{\left(2{\sqrt {2g(y-\mu x)}}{\sqrt {1+y'^{2}}}\right)^{2}}}\\\\-4g{\frac {(1+y'^{2})^{3/2}}{\sqrt {2g(y-\mu x)}}}&=-\left(2y''{\sqrt {2g(y-\mu x)}}{\frac {y'}{\sqrt {1+y'^{2}}}}+{\sqrt {2}}g(y'-\mu x'){\frac {\sqrt {1+y'^{2}}}{\sqrt {g(y-\mu x)}}}\right)y'+2{\sqrt {2}}y''{\sqrt {y-\mu x}}{\sqrt {1+y'^{2}}}\\\end{aligned}}}
Rolling Ball with radius
References
https://mathworld.wolfram.com/BrachistochroneProblem.html
https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/
http://hades.mech.northwestern.edu/images/e/e6/Legeza-MechofSolids2010.pdf
https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf
https://mate.uprh.edu/~urmaa/reports/brach.pdf
https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7
https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf