Eksperimentti: hyppykorkeuden määrittäminen impulssilla: Difference between revisions
(→Theory) |
|||
| Line 36: | Line 36: | ||
h &= \frac{J^2}{2gm^2} \\ | h &= \frac{J^2}{2gm^2} \\ | ||
&= \frac{(900 Ns)^2}{2 \times 9.81 m/s^2 \times (89.7 kg)^2 } \\ | &= \frac{(900 Ns)^2}{2 \times 9.81 m/s^2 \times (89.7 kg)^2 } \\ | ||
&= \frac{810000}{8046.09} | &= \frac{810000}{8046.09} \\ | ||
&= 100.67 m | &= 100.67 m\\ | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 17:45, 3 May 2022
Introduction

Jumping on the force plate you can feel the force. We use time of flight method to estimate the height of the jump.
Theory

Impulse . Actually Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta v} is our takeoff speed because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1=0} , and we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta v = v_{0} = \frac{J}{m} = \frac1m \int F dt} . Because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = s_0 + v_0 t + \tfrac12 at^2} and thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = v_0 t - \tfrac12 gt^2} because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_0=0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=-g = -9.81m/s^2} . However, for the velocity we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = v_0 - gt} and at the maximum height we have that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=0} , and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0 = gt} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\frac{v_0}{g}} . Combining these two we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} h &= v_0 t - \tfrac12 gt^2 \\ &= v_0 \tfrac{v_0}g - \tfrac12 g\left( \frac{v_0}g \right)^2 \\ &= \frac{v_0^2}{g} - \tfrac12 \frac{v_0^2}{g} \\ &= \frac{v_0^2}{2g} \\ &= \frac{J^2}{2gm^2} \end{align} }
Example
The example gives Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align*} m &= 880 N /9.81 = 89.7 kg \\ J &= 900 Ns \end{align*} and thus we have <math> \begin{align} h &= \frac{J^2}{2gm^2} \\ &= \frac{(900 Ns)^2}{2 \times 9.81 m/s^2 \times (89.7 kg)^2 } \\ &= \frac{810000}{8046.09} \\ &= 100.67 m\\ \end{align} }
References
https://www.thehoopsgeek.com/the-physics-of-the-vertical-jump/
https://www.brunel.ac.uk/~spstnpl/LearningResources/VerticalJumpLab.pdf