Thin lens equation and microscope: Difference between revisions
(→Theory) |
(→Theory) |
||
| Line 11: | Line 11: | ||
&= \frac1{f_2} - \frac1{L-i_1} \\ | &= \frac1{f_2} - \frac1{L-i_1} \\ | ||
&= \frac1{f_2} - \frac1{L-\frac{f_1 o_1}{o_1 - f_1}} \\ | &= \frac1{f_2} - \frac1{L-\frac{f_1 o_1}{o_1 - f_1}} \\ | ||
&= \frac1{f_2} - \frac1{ \frac{L(o_1-f_1)}{o_1-f_1}-\frac{f_1 o_1}{o_1 - f_1}} \\ | %&= \frac1{f_2} - \frac1{ \frac{L(o_1-f_1)}{o_1-f_1}-\frac{f_1 o_1}{o_1 - f_1}} \\ | ||
&= \frac1{f_2} - \frac{o_1-f_1} | &= \frac1{f_2} - \frac{o_1-f_1}{ L(o_1-f_1)- f_1 o_1} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Magnification (for the thin lens) is <math>m = - \frac io = - \frac{i_2}{o_1}</math>. | Magnification (for the thin lens) is <math>m = - \frac io = - \frac{i_2}{o_1}</math>. | ||
Revision as of 20:13, 11 August 2021
Introduction
The thin lens equation to compound microscope with two lenses. The lens that is closer to the object is called objective and the the one closer to the eye is called ocular. The distance between the lenses is .
Theory
We have . The distance between the lenses is , thus which gives Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle o_2 = L-i_1} . Thus we have for the image distance of the second lens
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac1{i_2} &= \frac1{f_2} - \frac1{o_2} \\ &= \frac1{f_2} - \frac1{L-i_1} \\ &= \frac1{f_2} - \frac1{L-\frac{f_1 o_1}{o_1 - f_1}} \\ %&= \frac1{f_2} - \frac1{ \frac{L(o_1-f_1)}{o_1-f_1}-\frac{f_1 o_1}{o_1 - f_1}} \\ &= \frac1{f_2} - \frac{o_1-f_1}{ L(o_1-f_1)- f_1 o_1} \\ \end{align}}
Magnification (for the thin lens) is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m = - \frac io = - \frac{i_2}{o_1}} .