Integraalipäivät 2021: Difference between revisions
Line 122: | Line 122: | ||
Rokotuskattavuus <math>f</math>. <math>R_E = {1-f}{R_0} < 1</math>, niin epidemiaa ei synny. <math>f > 1 - \frac1{R_0}</math>. Kausi-influenssassa <math>R_0 = 2\dots3</math>, jolloin <math>f \approx 2/3 \approx70\%</math>. | Rokotuskattavuus <math>f</math>. <math>R_E = {1-f}{R_0} < 1</math>, niin epidemiaa ei synny. <math>f > 1 - \frac1{R_0}</math>. Kausi-influenssassa <math>R_0 = 2\dots3</math>, jolloin <math>f \approx 2/3 \approx70\%</math>. | ||
=== Vihurirokko === | |||
''Vihurirokkotapaus''. Edellinen oli suljettu populaatio. | |||
<math>\begin{align} | |||
dS/ dt &= B -\beta SI -\mu S \\ | |||
dI/ dt &= \beta SI - \alpha I -\mu I \\ | |||
\end{align}</math> | |||
<math>\beta = \mu N</math>, jolloin kuolleisuus ja syntyvyys on tasapainossa ja analyysi helpottuu aika tavalla. | |||
<math>R_0 = \frac{\beta N}{\alpha+\mu}</math> | |||
<math>R_E = (1-f)R_0</math> | |||
1970-luvulla rokotettiin vain tytöt: pojille tauti on täysin vaaraton. Sairastumisiän odotusarvo. Ensin todennäköisyystiheys, a on ikä. | |||
== Harjoituksia == | == Harjoituksia == |
Revision as of 15:03, 17 April 2021
Johdanto
Ruotsalainen alkuperä https://www.kleindagarna.se/
Teoriaa
HARPPIFESTIVAALIT: marraskuu 2021.
Blockly, Processing.
Samuli Siltanen: Valokuvat & videot
Filttereitä, normeeraus. Matriisilaskenta. GIMP.
Myös fysiikkaa: nopeus, värivastefunktiot (tappisolujen herkkyyskäyrät).
- Kanavat
- Negatiivikuvat
- Yhteenlasku. Maksimi on valkoinen, pitää skaalata
- kuvaus yhdellä valolla: yhdistetään
- Kertolasku.
- Valkoisella (1, 1-bittinen), mustalla (0, 1-bittinen)
- Sileä ykkösen ositus.
- Tilastolliset tunnusluvut
- Keskiarvo: Haamuja
- Mediaani: Poistaa ihmiset
- Moodi
- Histogrammi
- Neliöjuuri: Curves, vaalentaa kuvat.
- Logaritmit ja gammakorjaus: Vanhojen kellastuneiden kuvien korjaus.
- Valkoinen
- Gammakorjaus punaiselle: r^gamma = g. (r=208/255, g = 184/255). Sama gamma kaikille punaisen pikseleille. Sama uusi gamma kaikille sinisen pikseleille.
- min, max, sqrt
- tummat tummenee, vaaleat vaalenee
- derivaatta (vaaka, pysty ja aika)
- Sarakkeiden erottaminen toisistaan: pysty
- Vaakaarakkeiden erottaminen toisistaan: vaaka
- osittaisderivaatat
- Reuna-algoritmi, itseisarvo. FFT
- Aikaderivaatta. Tuomo Rainio; tanssin ja derivaatan yhdistelmä videolla
- Ahvenenpoisto yhtälöryhmillä. Harmoninen kuvanpaikkaus.
- Poisson'n yhtälö, Dirichlet'n ongelma
- Peilaus, flip, flop
- Epälineraarisuus
- Napakoordinaatit
- Epälineaariset muunnkset, esim. suuret silmät warpilla
- Beltramin yhtälöt
- Tynnyrivääristymät
- Affiinimuunnokset
- Kuvan pakkaaminen (Wavelet)
- Rotaatiot
Taulukkolaskennassa.
Maarit Järvenpää: Fraktaalien matematiikkaa
Mitä ovat, mitä työkaluja käytetään. Minkälaisissa matemaattisissa ongelmissa fraktaaleihin törmätään. Fraktaalimittojen massajakaumien matikkaa. Analyysi, mitta- ja integraaliteoria, dynaamiset systemit, lukuteoria. . . Romanesco.
- Wikipedia: Mandelbrot Zoom
- Neulankääntöongelma (Kakeya 1917). Paras konveksi joukko tasasivuinen kolmio: (Pal 1921). Ei-konveksi joukko Steinerin käyrän sisäpuoli: . Mielivaltaisen pieni Besicovitch (1919, 1928). Janan siirtäminen jatkuvasti suoralta toiselta.
- Cantorin joukko: Poistetaan rekursiivisesti keskeltä kolmannes. . Cantorin koukon pituus . Mitkä pisteet kuuluvat Cantorin joukkoon? Pisteet vastaavat nollien ja ykkösten muodostamia päättymättömiä (bitti)jonoja: Osoite, tai koodi. Esim: , , ?? <- tarkista nuo. (Ketjumurtoluvut ja Cantorin joukko!). Cantorin joukko on ylinumeroituva: Perustelu helppo.
- Kochin käyrä. . Tasoss pinta-ala (kun neljän neliön konstruointi) . Cantorin satunnaisjoukko tasossa.
- Fraktaalimitta: dimensio. Useita eri dimension käsitteitä. Hausdorffin mitta. Minkowskin dimensio.
Soluautomaatti.
Mats Gyllenberg: Tartuntautien matematiikkaa
Matematiikalla pystytään selittämään, minkä tavalla asiat käyttäytyy, miten ne käyttäytyy. Vrt: Kepler/ Newtonin mekaniikkaa.
Kuinka suuri populaatiosta sairastuu epidemiaan. YO K12/8: Virukseen ei voi sairastua -- viruksen aiheuttamaan tautiin voi sairastua. Kaikki eivät sairastu epidemiaan: esim. musta surma. Minkä takia kaikki eivät sairastu? Malaria (Sir Ronald Moss??) Plasmadium-niminen alkueläin. Riittää, että saadaan hyttysten lukumäärä tietyn lukumäärän alapuolelle -- sekin vaikeaa. Suomessa malariaa Porkkalasta 1956?? Suomessa elää neljää lajia hyttystä, jotka voivat levittää malariaa.
Kynnysilmiö.
Rokotus. Vihurirokko Suomessa 1970-luvun alussa. Vihurirokko lievä lastentauti, mutta vaarallinen sikiölle, jos raskaana oleva nainen sairastuu raskauden ensimmäisen kolmen kk:n aikana. Ohjelman aikana raskaudenaikaiset tapaukset lisääntyivät -- tapa jolla rokotusohjelma toteutettiin, oli pielessä.
Malli: Suljettu populaatio jaetaan kolmeen osaan: S(eptable), I(nfected) ja R(emoved, toipuvat tai kuolleet).
Jotta epidemia voisi syntyä, alussa, kun .
Jos : on pieni luku. Ei synny epidemiaa.
Jos : . Alussa kasvaa eksponentiaalisesti.
Mitä tarkoittaa: , missä todennäköisyys leviämiseen ja kontaktien lukumäärä. Suomessa 150 vuotta sitten samassa huoneessa asui monta ihmistä, nyt vähemmän: ei ole kontakteja.
Montako sairastuu tautiin? ,
Ratkaistaan käyrä -tasossa: . Joten . Alussa ; ja . Siis ja
Kun epidemia on ohitse: . on negatiivinen ja alhaalta rajoitettu: . :n raja-arvo on nolla.
Ratkaistaan graafisesti. , osuus joka ei koskaan sairastu.
. Jos rokutusohjelma, niin (kausi-inlfuenssi, jolloin rokote annetaan ennen taudin alkua). Kuinka iso osuus populaatiosta pitää rokottaa, jotta epidemiaa ei syntyisi.
Rokotuskattavuus . , niin epidemiaa ei synny. . Kausi-influenssassa , jolloin .
Vihurirokko
Vihurirokkotapaus. Edellinen oli suljettu populaatio.
, jolloin kuolleisuus ja syntyvyys on tasapainossa ja analyysi helpottuu aika tavalla.
1970-luvulla rokotettiin vain tytöt: pojille tauti on täysin vaaraton. Sairastumisiän odotusarvo. Ensin todennäköisyystiheys, a on ikä.
Harjoituksia
- Digitaalinen aurinkokello, Kenneth Falconer (1980-luvulla). Häiriöitä tulee, mutta niiden mitta on nolla.
- Fraktaalien reunat (Pythagoras, , milloin pituudet lähenevät toisiaan). Huom: kolmiot hypotenuusalla.
Viitteitä
Kuva:
- https://maol.fi/app/uploads/2020/09/MAOL_paja5_mustavalkoista.pdf
- https://maol.fi/app/uploads/2020/09/maol_mustavalkoista_taidetta_biteilla.pdf
Fraktaali: