Brachistochrone: Difference between revisions

From wikiluntti
Line 64: Line 64:


and is the equation of a cycloid.
and is the equation of a cycloid.
=== Rolling Ball ===


=== Friction ===
=== Friction ===


=== Rolling Ball ===





Revision as of 09:39, 20 February 2021

Introduction

To find the shape of the curve which the time is shortest possible. . .

Theory

Variational Calculus and Euler--Lagrange Equation

The time from to is where is the Pythagorean distance measure and is determined from the the law of conservation of energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac12 mv^2 = mgy } . giving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = \sqrt{2gy}} . Plugging these in, we get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'^{2}}{2gy}}dx = \int_{P_a}^{P_b} f dx} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f=f(y,y')} is the function subject to variational consideration.

According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0} is satisfied.

No Friction

We get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial f}{\partial y'} = \frac{\partial }{\partial y'} \sqrt{\frac{1+y'^{2}}{2gy}} = \frac1{\sqrt{2gy}} \frac{\partial }{\partial y'} \sqrt{1+y'^{2}} = \frac{2y'}{\sqrt{2gy}} \frac1 {2\sqrt{1+y'^{2}}} } . Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , we may use the simplified E--L formula Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f-y' \frac{\partial f}{\partial y'}= \text{Constant}} .

Thus, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f - y' \frac{\partial f}{\partial y'} = \sqrt{ \frac{1+y'{^2}}{2gy} } - \frac{y'{^2}}{\sqrt{2gy} \sqrt{1+y'^{2}}} = C } So we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1+y'{^2}}{\sqrt{2gy(1+y'{^2})}} - \frac{y'{^2}}{\sqrt{2gy} \sqrt{1+y'^{2}}} = \frac{1}{\sqrt{2gy(1+y'{^2})}} = C } and multiplying this with the denominator and rearring, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\left( 1 + y'^{2}\right) = \frac1{2gC^2} = k^2 } by redefining the constant. The standard solution to this equation is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x &= \frac12 k^2( \theta - \sin\theta) \\ y &= \frac12 k^2( 1 - \cos\theta) \end{align} }

and is the equation of a cycloid.

Rolling Ball

Friction

Rolling Cylinder

References

https://mathworld.wolfram.com/BrachistochroneProblem.html

https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/

http://hades.mech.northwestern.edu/images/e/e6/Legeza-MechofSolids2010.pdf

https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf