Water molecule bond length: Difference between revisions

From wikiluntti
Line 4: Line 4:


=== Newton Equations ===
=== Newton Equations ===
<math>F = ma</math> where <math>F = - \nabla V</math>.  
<math>F = ma</math> where <math>F = - \nabla V</math>. The system is 1D, thus gradient will be differential, and <math>F= - \frac{d V}{dx}</math>.
 


=== Integration ===
=== Integration ===
Line 19: Line 20:


<math>
<math>
a(t) = \frac{F(x(t))}{m}  
a(t) = -\frac{\frac{d}{dx}(V(t))}{m}  
</math>
</math>


=== Potential Function ===


==== Velocity Verlet Algorithm ====
[https://en.wikipedia.org/wiki/Lennard-Jones_potential Lennard--Jones potential] with parameters for [https://en.wikipedia.org/wiki/Water_model TIPS] model:
 
A very good and easy to implement integration method is velocity Verlet:


<math>
<math>
\begin{align}
\begin{align}
x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\
A &= 580.0 \times 10^3 kcal A^{12}/mol \\
v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t
B &= 525.0 kcal A^6/mol
\end{align}
\end{align}
</math>
</math>
where <math>A</math> is Ångströms.


=== Potential Function ===


[https://en.wikipedia.org/wiki/Lennard-Jones_potential Lennard--Jones potential] with parameters for [https://en.wikipedia.org/wiki/Water_model TIPS] model:
==== Velocity Verlet Algorithm ====
 
A very good and easy to implement integration method is velocity Verlet:


<math>
<math>
\begin{align}
\begin{align}
A &= 580.0 \times 10^3 kcal A^{12}/mol \\
x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\
B &= 525.0 kcal A^6/mol
v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t
\end{align}
\end{align}
</math>
</math>
where <math>A</math> is Ångströms.


=== Temperature/  Initial distribution ===
=== Temperature/  Initial distribution ===

Revision as of 22:42, 12 October 2020

Introduction

Classical Mechanics

Newton Equations

where . The system is 1D, thus gradient will be differential, and .


Integration

The finite differences (Euler method) are

and

Potential Function

Lennard--Jones potential with parameters for TIPS model:

where is Ångströms.


Velocity Verlet Algorithm

A very good and easy to implement integration method is velocity Verlet:

Temperature/ Initial distribution

The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature

Results

Issues

1D statement