Water molecule bond length: Difference between revisions

From wikiluntti
Line 11: Line 11:


<math>
<math>
\begin{align*}
\begin{align}
v(t) &= \frac{x(t+\Delta t) - x(t)}{\Delta t} \\
v(t) &= \frac{x(t+\Delta t) - x(t)}{\Delta t} \\
a(t) &= \frac{v(t+\Delta t) - v(t)}{\Delta t}
a(t) &= \frac{v(t+\Delta t) - v(t)}{\Delta t}
\end{align*}
\end{align}
</math>
</math>
and
and

Revision as of 21:40, 12 October 2020

Introduction

Classical Mechanics

Newton Equations

where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F=-\nabla V} .

Integration

The finite differences (Euler method) are

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}v(t)&={\frac {x(t+\Delta t)-x(t)}{\Delta t}}\\a(t)&={\frac {v(t+\Delta t)-v(t)}{\Delta t}}\end{aligned}}} and


Velocity Verlet Algorithm

A very good and easy to implement integration method is velocity Verlet:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}x(t+\Delta t)&=x(t)+v(t)\Delta t+{\frac {1}{2}}a\Delta t^{2}\\v(t+\Delta t)&=v(t)+{\frac {1}{2}}\left(a(t)+a(t+\Delta t)\right)\Delta t\end{aligned}}}

Potential Function

Lennard--Jones potential with parameters for TIPS model:

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is Ångströms.

Temperature/ Initial distribution

The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(v) = \left( \frac{m}{2\pi k_B T} \right)^{1/2} \exp\left[- \frac12 \frac{mv^2}{k_B T} \right] }

Results

Issues

1D statement