Water molecule bond length: Difference between revisions

From wikiluntti
No edit summary
Line 28: Line 28:


<math>
<math>
\begin{align*}
\begin{align}
x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\
x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\
v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t  
v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t  
\end{align*}
\end{align}
</math>
</math>


=== Potential Function ===
=== Potential Function ===

Revision as of 22:39, 12 October 2020

Introduction

Classical Mechanics

Newton Equations

where .

Integration

The finite differences (Euler method) are

Failed to parse (syntax error): {\displaystyle \begin{align*} v(t) &= \frac{x(t+\Delta t) - x(t)}{\Delta t} \\ a(t) &= \frac{v(t+\Delta t) - v(t)}{\Delta t} \end{align*} } and


Velocity Verlet Algorithm

A very good and easy to implement integration method is velocity Verlet:

Potential Function

Lennard--Jones potential with parameters for TIPS model:

Failed to parse (syntax error): {\displaystyle \begin{align*} A &= 580.0 \times 10^3 kcal A^{12}/mol \\ B &= 525.0 kcal A^6/mol \end{align*} } where is Ångströms.

Temperature/ Initial distribution

The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature

Results

Issues

1D statement