Integer division that rounds up: Difference between revisions

From wikiluntti
Line 28: Line 28:
because <math>0 \leq \frac{y-1}y < 1</math>. This part is ok.
because <math>0 \leq \frac{y-1}y < 1</math>. This part is ok.


'''Part 2'''. If <math>y</math> does not divide <math>x</math> we have <math>x=by + r</math> for some <math>b\in\mathbb N_+</math> and <math>0<r<b-1</math>. Thus we have
'''Part 2'''. If <math>y</math> does not divide <math>x</math> we have <math>x=by + r</math> for some <math>b\in\mathbb N_+</math> and <math>0<r<b</math>. Thus we have


<math>
<math>

Revision as of 10:14, 8 July 2024

Introduction

Usual integer division rounds down: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac ab = \left \lfloor \frac ab \right \rfloor} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b \in \mathbb N, b\neq 0} . To round up (if overflow is not an issue), you can use following algorithm with the usual roundig down division: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = \frac{x+y-1}{y} = \left \lceil \frac xy \right \rceil }

Proof

Proof is in two parts; 1st if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} divides Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , and if not. Note that usual integer division rounds down.

Part 1. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} divides Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=ay} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in\mathbb N_+} . Thus we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left \lfloor \frac{x+y-1}{y} \right \rfloor &= \left \lfloor \frac{x}{y} + \frac{y-1}y \right \rfloor \\ &= \left \lfloor \frac{ay}{y} + \frac{y-1}y \right \rfloor \\ &= \frac{ay}{y} \\ &= \frac{x}{y} \end{align} }

because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leq \frac{y-1}y < 1} . This part is ok.

Part 2. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} does not divide Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=by + r} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\in\mathbb N_+} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<r<b} . Thus we have

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\left\lfloor {\frac {x+y-1}{y}}\right\rfloor &=\left\lfloor {\frac {x}{y}}+{\frac {y-1}{y}}\right\rfloor \\&=\left\lfloor {\frac {by+r}{y}}+{\frac {y-1}{y}}\right\rfloor \\&=\end{aligned}}}