Basics of Structural Analysis: Difference between revisions
| Line 53: | Line 53: | ||
=== Deflection of beams === | === Deflection of beams === | ||
The strain <math>\epsilon</math> in the filament is due to the different lengths of filaments in bended beam. <math>\epsilon = </math> | [[File:BeamDeflection.svg|thumb|The deflection of a beam.]] | ||
The strain <math>\epsilon</math> in the filament is due to the different lengths of filaments in bended beam. <math>\epsilon = \frac{\ell_1 - \ell}{\ell} = \frac{\Delta y}{R}</math> which for linear elastic material (using Hooke's law) gives | |||
<math> \frac\sigma E = \frac{\Delta y}{R} = \epsilon</math> | |||
Radius of curvature <math>\frac1R = \frac{\partial v^2}{\partial x^2}</math>, and <math>\epsilon_{xx} = -y \frac{\partial^2 v}{\partial x^2}</math>. | Radius of curvature <math>\frac1R = \frac{\partial v^2}{\partial x^2}</math>, and <math>\epsilon_{xx} = -y \frac{\partial^2 v}{\partial x^2}</math>. | ||
Revision as of 11:31, 20 January 2024
Introduction
Structural analysis using about high school level physics and maths.
Aim to calculate fiberglass cansat structure
Basic theory
Principle of superposition: linearity. Displacement at location from forces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1} and </math>P_2</math> located at different positions is calculated as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_B = \Delta_{BP_1} + \Delta_{BP_2}}
The energy principle: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dW = Fd\Delta} giving the total energy as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W = \int_0^\Delta Fd\Delta} which is called strain energy. For linear deformation this gives Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=\tfrac12 F\Delta} .
Virtual work principle.
Dead loads, live loads, impact loads (impact factor), wind loads.
Equilibrium.
Forces:
- Normal force and axial force (out-of-plane forces, in-plane forces)
- Shearing force . Thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta V =\int w(x) dx } . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w(x)} is the intensity of applied (normal?) force.
- Bending moment Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dM}{dx} = V(x)} and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2M}{dx^2} = -w(x)} .
- Torsion (of a plate)
- Curvature and twist
Hooke's law.
Plate
- Torsion (of a plate)
- Curvature and twist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{xy}} .
Curvature in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_x = \frac1{R_x}} is the rate of change of the slope with respect to arch length, giving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_x = \frac{\frac{\partial^2 w}{\partial x^2}} {\sqrt{(1 + \left(\frac{\partial w}{\partial x} \right)^2}^3} }
Strains in a plate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{xx}}
.
Von Kármán strains.
Beam
Forces:
- Normal force and axial force
- Shearing force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{V(x)}{x} = -w(x) } . Thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta V =\int w(x) dx } . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w(x)} is the intensity of applied (normal?) force.
- Bending moment Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dM}{dx} = V(x)} and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2M}{dx^2} = -w(x)} .
Deflection of beams

The strain Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} in the filament is due to the different lengths of filaments in bended beam. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \frac{\ell_1 - \ell}{\ell} = \frac{\Delta y}{R}} which for linear elastic material (using Hooke's law) gives Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac\sigma E = \frac{\Delta y}{R} = \epsilon}
Radius of curvature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac1R = \frac{\partial v^2}{\partial x^2}}
, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{xx} = -y \frac{\partial^2 v}{\partial x^2}}
.
Column
Column is a vertical beam.