Pressure in atmosphere: Difference between revisions
Line 50: | Line 50: | ||
https://en.wikipedia.org/wiki/U.S._Standard_Atmosphere | https://en.wikipedia.org/wiki/U.S._Standard_Atmosphere | ||
=== NRLMSISE-00 == | |||
Is an empirical, global reference atmospheric model of the Earth from ground to space. | |||
=== NASA Global Reference Atmospheric Models GRAM === | === NASA Global Reference Atmospheric Models GRAM === |
Revision as of 18:13, 30 August 2023
Introduction
ISO2533:1975
The case in Toposhere (<10 km).
- Lapse rate +6.5 °C/km
- Base temp 19.0 °C
- Base atmospheric pressure 108,900 Pa equals 1.075 atm
- Base atmospheric density 1.2985 kg/m3
International Standard Atmosphere
https://en.wikipedia.org/wiki/International_Standard_Atmosphere
Consider the function in GY91's BMP280-3.3, eg at https://startingelectronics.org/tutorials/arduino/modules/pressure-sensor/
Earth's atmosphere's changes in
- Pressure
- Temperature
- Density
- Viscosity or
Hydrostatic balance The ideal gas law
Reference atmospheric model
How the ideal gas properties change (mainly) as a function of altitude (etc).
Static atmospheric model
and (see above).
Standard atmosphere
Isothermal-barotropic approximation and scale height
Temperature and molecular weight are constant: density and pressure are exponential functions of altitude.
The US standard atmosphere
More realistic temperature function, consisting of eight data points connected by straight lines, which is---of course---an approximation.
https://en.wikipedia.org/wiki/U.S._Standard_Atmosphere
= NRLMSISE-00
Is an empirical, global reference atmospheric model of the Earth from ground to space.
NASA Global Reference Atmospheric Models GRAM
Barometric formula
Models how the pressure of the air changes with altitude with linear temperature change.
Ideal gas law , where pressure is a function of , thus and the hydrostatic assumption are needed to derive this.
Assume and which gives and we have
Actually, both and are dependent on altitude . Thus, we will assume linear dependency on temperature , and we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac {dp}{dh}&=- g \frac{pM}{R(T_0 - Lh)} \\ \frac {dp}{p}&=- g \frac{M}{R(T_0 - Lh)} dh \\ \ln p &= \frac{gM}{RL} \ln(T_0 - hL) + C \\ p &= p_0 \left( T_0 - hL \right)^{\frac{gM}{RL}} \end{align} }
and this gives for altitude Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = \frac{T_0 - \left( \frac{p}{p_0}\right)^{\frac{LR}{gM} }}{L} }
Simplified model from Weather.gov
https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = 44307.70\left( 1 - \left( \frac{p}{1013.25} \right)^{0.190284} \right) }