Thin lens equation and microscope: Difference between revisions

From wikiluntti
Line 11: Line 11:
&= \frac1{f_2} - \frac1{L-i_1} \\
&= \frac1{f_2} - \frac1{L-i_1} \\
&= \frac1{f_2} - \frac1{L-\frac{f_1 o_1}{o_1 - f_1}} \\
&= \frac1{f_2} - \frac1{L-\frac{f_1 o_1}{o_1 - f_1}} \\
%&= \frac1{f_2} - \frac1{ \frac{L(o_1-f_1)}{o_1-f_1}-\frac{f_1 o_1}{o_1 - f_1}} \\
&= \frac1{f_2} - \frac1{ \frac{L(o_1-f_1)}{o_1-f_1}-\frac{f_1 o_1}{o_1 - f_1}} \\
&= \frac1{f_2} - \frac{o_1-f_1}{ \frac{L(o_1-f_1)- f_1 o_1} \\
&= \frac1{f_2} - \frac{o_1-f_1}{ \frac{L(o_1-f_1)- f_1 o_1} \\
\end{align}</math>
\end{align}</math>


Magnification (for the thin lens) is <math>m = - \frac io = -  \frac{i_2}{o_1}</math>.
Magnification (for the thin lens) is <math>m = - \frac io = -  \frac{i_2}{o_1}</math>.

Revision as of 21:12, 11 August 2021

Introduction

The thin lens equation to compound microscope with two lenses. The lens that is closer to the object is called objective and the the one closer to the eye is called ocular. The distance between the lenses is .

Theory

We have . The distance between the lenses is , thus which gives . Thus we have for the image distance of the second lens

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \frac1{i_2} &= \frac1{f_2} - \frac1{o_2} \\ &= \frac1{f_2} - \frac1{L-i_1} \\ &= \frac1{f_2} - \frac1{L-\frac{f_1 o_1}{o_1 - f_1}} \\ &= \frac1{f_2} - \frac1{ \frac{L(o_1-f_1)}{o_1-f_1}-\frac{f_1 o_1}{o_1 - f_1}} \\ &= \frac1{f_2} - \frac{o_1-f_1}{ \frac{L(o_1-f_1)- f_1 o_1} \\ \end{align}}

Magnification (for the thin lens) is .