Introduction
To find the shape of the curve which the time is shortest possible. . .
We use WxMaxima to do the calculus part.
Theory
Variational Calculus and Euler--Lagrange Equation
The time that is needed for sliding from point
P
a
{\displaystyle P_{a}}
to point
P
b
{\displaystyle P_{b}}
is
t
=
∫
P
a
P
b
1
v
d
s
{\displaystyle t=\int _{P_{a}}^{P_{b}}{\frac {1}{v}}ds}
where
d
s
=
1
+
y
′
2
d
x
{\displaystyle ds={\sqrt {1+y'{^{2}}}}dx}
is the Pythagorean distance measure and
v
{\displaystyle v}
is determined from the the law of conservation of energy
1
2
m
v
2
=
m
g
y
{\displaystyle {\frac {1}{2}}mv^{2}=mgy}
giving
v
=
2
g
y
{\displaystyle v={\sqrt {2gy}}}
. Plugging these in, we get
t
=
∫
P
a
P
b
1
+
y
′
2
2
g
y
d
x
=
∫
P
a
P
b
f
d
x
{\displaystyle t=\int _{P_{a}}^{P_{b}}{\sqrt {\frac {1+y'^{2}}{2gy}}}dx=\int _{P_{a}}^{P_{b}}fdx}
,
where
f
=
f
(
y
,
y
′
)
{\displaystyle f=f(y,y')}
is the function subject to variational consideration.
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation
∂
f
∂
y
−
d
d
x
∂
f
∂
y
′
=
0
{\displaystyle {\frac {\partial f}{\partial y}}-{\frac {d}{dx}}{\frac {\partial f}{\partial y'}}=0}
is satisfied.
No Friction
Since
f
{\displaystyle f}
does not depend on
x
{\displaystyle x}
, we may use the simplified E--L formula
f
−
y
′
∂
f
∂
y
′
=
{\displaystyle f-y'{\frac {\partial f}{\partial y'}}=}
Constant.
The differentials are easy, and we have
f
−
y
′
∂
f
∂
y
′
=
1
+
y
′
2
2
g
y
−
y
′
2
2
g
y
1
+
y
′
2
=
C
{\displaystyle f-y'{\frac {\partial f}{\partial y'}}={\sqrt {\frac {1+y'{^{2}}}{2gy}}}-{\frac {y'{^{2}}}{{\sqrt {2gy}}{\sqrt {1+y'^{2}}}}}=C}
So we have
1
+
y
′
2
2
g
y
(
1
+
y
′
2
)
−
y
′
2
2
g
y
1
+
y
′
2
=
1
2
g
y
(
1
+
y
′
2
)
=
C
{\displaystyle {\frac {1+y'{^{2}}}{\sqrt {2gy(1+y'{^{2}})}}}-{\frac {y'{^{2}}}{{\sqrt {2gy}}{\sqrt {1+y'^{2}}}}}={\frac {1}{\sqrt {2gy(1+y'{^{2}})}}}=C}
and multiplying this with the denominator and rearring, we have
y
(
1
+
y
′
2
)
=
1
2
g
C
2
=
k
2
{\displaystyle y\left(1+y'^{2}\right)={\frac {1}{2gC^{2}}}=k^{2}}
by redefining the constant. The standard solution to this equation is given by
x
=
1
2
k
2
(
θ
−
sin
θ
)
y
=
1
2
k
2
(
1
−
cos
θ
)
{\displaystyle {\begin{aligned}x&={\frac {1}{2}}k^{2}(\theta -\sin \theta )\\y&={\frac {1}{2}}k^{2}(1-\cos \theta )\end{aligned}}}
and is the equation of a cycloid.
No Friction: Maxima
The details using WxMaxima:
energy : 1 /2*m*v^2 = m*g*y;
v_sol : solve( energy, v) ;
v_sol : v_sol[ 2 ] ;
EL_f : rhs( sqrt( 1 +'diff(y,t)^2)/v_sol );
doof_dooyp : diff( EL_f, ' diff( y,t)) ;
EL: EL_f - ' diff( y,t) *doof_dooyp = C;
radcan( %) ;
EL_dy : solve( EL, y) ;
ode2( EL_dy[ 1 ] ^2,y,t) ;
but the ode2 solver cannot handle the nonlinear differential equation.
Template:Collapsible sections option
Rolling Ball: Angular momentum but no radius
The rotational energy is
E
rot
=
1
2
I
ω
2
{\displaystyle E_{\text{rot}}={\frac {1}{2}}I\omega ^{2}}
and by applying non-slipping condition
v
=
ω
r
{\displaystyle v=\omega r}
we get
E
rot
=
v
2
2
r
2
I
{\displaystyle E_{\text{rot}}={\frac {v^{2}}{2r^{2}}}I}
. Note that actually the ball is rolling on a curve, and thus the given slipping condition is only an approximation. The correct case is shown below in Chapter . ..
For the simplified case, the calculation is similar to the previous one, and using Maxima, we get
energy : 1 /2*m*v^2 + 1 /2*I*v^2/r^2= m*g*y;
. . .
gives
m
r
2
+
I
2
g
m
y
r
(
d
d
t
y
)
2
+
1
=
C
⇒
y
(
1
+
y
′
2
)
=
m
r
2
+
I
2
g
m
r
2
C
2
=
k
1
2
{\displaystyle {\begin{aligned}{\frac {\sqrt {m\,{{r}^{2}}+I}}{{\sqrt {2gmy}}r\,{\sqrt {{{\left({\frac {d}{dt}}y\right)}^{2}}+1}}}}=C&&\Rightarrow &&y(1+y'{^{2}})={\frac {mr^{2}+I}{2gmr^{2}C^{2}}}=k_{1}^{2}\end{aligned}}}
and thus only the constant
k
1
{\displaystyle k_{1}}
differs from the case with no angular momentum.
Friction
The forces on the path. Actually the sliding particle is infinitemal small.
The normal force follows the path, and thus is given by
T
→
=
d
x
d
s
x
→
+
d
y
d
s
y
→
{\displaystyle {\vec {T}}={\frac {dx}{ds}}{\vec {x}}+{\frac {dy}{ds}}{\vec {y}}}
, but The friction depends on the normal force of the path. The normal force is perpendicular to the previous, thus we have
N
→
=
−
d
y
d
s
x
→
+
d
x
d
s
y
→
{\displaystyle {\vec {N}}=-{\frac {dy}{ds}}{\vec {x}}+{\frac {dx}{ds}}{\vec {y}}}
The conservation of energy does not apply here, but we have Newton's Second Law,
F
→
=
m
d
v
→
d
t
{\displaystyle {\vec {F}}=m{\frac {d{\vec {v}}}{dt}}}
. We need the components along the curve
s
{\displaystyle s}
. Thus we have
F
→
=
G
→
−
F
→
μ
=
m
g
d
y
d
s
−
μ
m
g
d
x
d
s
{\displaystyle {\begin{aligned}{\vec {F}}&={\vec {G}}-{\vec {F}}_{\mu }\\&=mg{\frac {dy}{ds}}-\mu mg{\frac {dx}{ds}}\end{aligned}}}
Clearly, for the left hand side of NII we have
m
d
v
d
t
=
m
d
v
d
s
d
s
d
t
=
m
d
v
d
s
v
=
m
v
d
v
d
s
=
m
1
2
d
v
2
d
s
{\displaystyle m{\frac {dv}{dt}}=m{\frac {dv}{ds}}{\frac {ds}{dt}}=m{\frac {dv}{ds}}v=mv{\frac {dv}{ds}}=m{\frac {1}{2}}{\frac {dv^{2}}{ds}}}
, and by including the differential part only, we have
1
2
v
2
=
g
(
y
−
μ
x
)
v
=
2
g
(
y
−
μ
x
)
{\displaystyle {\begin{aligned}{\frac {1}{2}}v^{2}&=g(y-\mu x)\\v&={\sqrt {2g(y-\mu x)}}\end{aligned}}}
and
f
{\displaystyle f}
for the Euler--Lagrange equation is
f
=
1
+
y
′
2
2
g
(
y
−
μ
x
)
{\displaystyle f={\sqrt {\frac {1+y'^{2}}{2g(y-\mu x)}}}}
Euler--Lagrange
NII : 1 /2*v^2 = g*( y( x) -mu*x) ;
v_sol : solve( NII, v) ;
v_sol : v_sol[ 2 ] ;
EL_f : rhs( sqrt( 1 +'diff(y(x),x)^2)/v_sol );
df_dy : diff(EL_f, y(x));
df_dyp : diff(EL_f, ' diff( y( x) ,x)) ;
d_dx : diff( df_dyp, x) ;
EL : df_dy - d_dx = 0 ;
Elrad : radcan( EL ) ;
num( lhs( ELrad) ) /sqrt( 2 ) /sqrt( y( x) -mu*x)= 0 ;
ratsimp( %) ;
(
2
μ
x
−
2
y
(
x
)
)
(
d
2
d
x
2
y
(
x
)
)
−
μ
(
d
d
x
y
(
x
)
)
3
−
(
d
d
x
y
(
x
)
)
2
−
μ
(
d
d
x
y
(
x
)
)
−
1
=
0
2
(
y
−
μ
x
)
y
″
+
(
1
+
(
y
′
)
2
)
(
1
+
μ
y
′
)
=
0
{\displaystyle {\begin{aligned}\left(2\mu x-2\operatorname {y} (x)\right)\,\left({\frac {{d}^{2}}{d{{x}^{2}}}}\operatorname {y} (x)\right)-\mu {{\left({\frac {d}{dx}}\operatorname {y} (x)\right)}^{3}}-{{\left({\frac {d}{dx}}\operatorname {y} (x)\right)}^{2}}-\mu \left({\frac {d}{dx}}\operatorname {y} (x)\right)-1=0\\2\left(y-\mu x\right)y''+\left(1+\left(y'\right)^{2}\right)\left(1+\mu y'\right)=0\end{aligned}}}
Reduction
Remember that
y
″
d
y
=
y
′
d
(
y
′
)
{\displaystyle y''dy=y'd(y')}
.
Then, note that
d
d
x
(
y
−
μ
x
)
=
y
′
−
μ
{\displaystyle {\frac {d}{dx}}\left(y-\mu x\right)=y'-\mu }
. Thus, we multiply EL equation by
y
′
−
μ
{\displaystyle y'-\mu }
to obtain
−
y
′
−
μ
y
−
μ
x
=
2
(
y
′
−
μ
)
y
″
(
1
+
y
′
2
)
(
1
+
μ
y
′
)
{\displaystyle -{\frac {y'-\mu }{y-\mu x}}={\frac {2(y'-\mu )y''}{(1+y'^{2})(1+\mu y')}}}
The left hand side can be integrated:
−
∫
y
′
−
μ
y
−
μ
x
d
x
=
−
ln
|
y
−
μ
x
|
+
C
1
{\displaystyle -\int {\frac {y'-\mu }{y-\mu x}}dx=-\ln |y-\mu x|+C_{1}}
Do the partial fraction decomposition for the right side and get
2
(
y
′
−
μ
)
(
1
+
y
′
2
)
(
1
+
μ
y
′
)
=
2
y
′
1
+
y
′
2
−
2
1
+
μ
y
′
{\displaystyle {\frac {2(y'-\mu )}{(1+y'^{2})(1+\mu y')}}={\frac {2y'}{1+y'^{2}}}-{\frac {2}{1+\mu y'}}}
Thus we can integrate
∫
2
y
′
1
+
y
′
2
−
2
μ
1
+
μ
y
′
d
x
=
ln
|
1
+
y
′
2
|
−
2
ln
|
1
+
μ
y
′
|
+
C
2
{\displaystyle \int {\frac {2y'}{1+y'^{2}}}-{\frac {2\mu }{1+\mu y'}}dx=\ln |1+y'^{2}|-2\ln |1+\mu y'|+C_{2}}
Together we have
−
ln
|
y
−
μ
x
|
+
C
1
=
ln
|
1
+
y
′
2
|
−
2
ln
|
1
+
μ
y
′
|
+
C
2
{\displaystyle -\ln |y-\mu x|+C_{1}=\ln |1+y'^{2}|-2\ln |1+\mu y'|+C_{2}}
that can be written as
ln
1
|
y
−
μ
x
|
=
ln
1
+
y
′
2
(
1
+
μ
y
′
)
2
+
C
3
{\displaystyle \ln {\frac {1}{|y-\mu x|}}=\ln {\frac {1+y'^{2}}{(1+\mu y')^{2}}}+C_{3}}
and it gives finally
C
y
−
μ
x
=
1
+
y
′
2
(
1
+
μ
y
′
)
2
⟺
(
1
+
μ
y
′
)
2
=
C
(
y
−
μ
x
)
(
1
+
y
′
2
)
{\displaystyle {\begin{aligned}{\frac {C}{y-\mu x}}={\frac {1+y'^{2}}{(1+\mu y')^{2}}}\iff (1+\mu y')^{2}=C(y-\mu x)(1+y'^{2})\end{aligned}}}
depends(y,x );
EL: 2*( y - mu*x )*diff( y,x,2) + (1 + diff(y,x)^2)*(1+mu*diff(y,x)) = 0;
factor( ratsimp(solve(EL, diff(y,x,2))*(diff(y,x)-mu)*2/(1+diff(y,x)^2)/(1+mu*diff(y,x))) );
eq1 : integrate( rhs( EL_2[1]),x) + log(C);
eq2 : integrate( partfrac( lhs( EL_2[1]), diff(y,x) ), x);
exp(eq1)=exp(eq2);
Solution
The solution can be obtained by setting
y
′
=
d
y
d
x
=
cot
(
1
2
θ
)
{\displaystyle y'={\tfrac {dy}{dx}}=\cot({\tfrac {1}{2}}\theta )}
which implies
d
x
=
tan
1
2
θ
d
y
{\displaystyle dx=\tan {\tfrac {1}{2}}\theta dy}
and we have
1
+
y
′
2
=
sin
2
θ
2
{\displaystyle 1+y'^{2}=\sin ^{2}{\tfrac {\theta }{2}}}
.
We solve for
x
{\displaystyle x}
, and get
y
−
μ
x
=
C
(
1
+
μ
y
′
)
2
1
+
y
′
2
{\displaystyle y-\mu x=C{\frac {(1+\mu y')^{2}}{1+y'^{2}}}}
d
u
=
c
2
sin
θ
+
2
μ
cos
θ
−
μ
2
sin
θ
cot
1
2
θ
−
μ
d
θ
d
y
=
c
2
cos
1
2
θ
(
sin
θ
+
2
μ
cos
θ
−
μ
2
sin
θ
)
cos
1
2
θ
−
μ
sin
1
2
θ
d
θ
{\displaystyle {\begin{aligned}du&={\frac {c}{2}}{\frac {\sin \theta +2\mu \cos \theta -\mu ^{2}\sin \theta }{\cot {\tfrac {1}{2}}\theta -\mu }}d\theta \\dy&={\frac {c}{2}}{\frac {\cos {\tfrac {1}{2}}\theta (\sin \theta +2\mu \cos \theta -\mu ^{2}\sin \theta )}{\cos {\tfrac {1}{2}}\theta -\mu \sin {\tfrac {1}{2}}\theta }}d\theta \end{aligned}}}
Rolling Ball with radius
ω
=
r
curve
+
r
r
d
α
d
t
−
d
α
d
t
=
ρ
r
d
α
d
t
=
v
r
{\displaystyle \omega ={\frac {r_{\text{curve}}+r}{r}}{\frac {d\alpha }{dt}}-{\frac {d\alpha }{dt}}={\frac {\rho }{r}}{\frac {d\alpha }{dt}}={\frac {v}{r}}}
The conservation of energy:
m
g
y
=
1
2
m
v
2
+
1
2
2
5
m
r
2
v
2
/
r
2
{\displaystyle mgy={\frac {1}{2}}mv^{2}+{\frac {1}{2}}{\frac {2}{5}}mr^{2}v^{2}/r^{2}}
Beltrami Indentity
E-L states:
∂
L
∂
y
=
d
d
x
∂
L
∂
y
′
{\displaystyle {\frac {\partial L}{\partial y}}={\frac {d}{dx}}{\frac {\partial L}{\partial y'}}}
, but
d
L
d
x
=
y
′
∂
L
∂
y
+
y
″
∂
L
∂
y
′
+
∂
L
∂
x
{\displaystyle {\frac {dL}{dx}}=y'{\frac {\partial L}{\partial y}}+y''{\frac {\partial L}{\partial y'}}+{\frac {\partial L}{\partial x}}}
, and now
∂
L
/
∂
x
=
0
{\displaystyle \partial L/\partial x=0}
and by substituting the first result, we have
d
L
d
x
−
(
y
′
d
d
x
∂
L
∂
y
′
+
y
″
∂
L
∂
y
′
)
=
0
⇔
d
L
d
x
−
d
d
x
(
y
′
∂
L
∂
y
′
)
=
d
d
x
(
L
−
y
′
∂
L
∂
y
′
)
=
0
{\displaystyle {\begin{aligned}{\frac {dL}{dx}}-(y'{\frac {d}{dx}}{\frac {\partial L}{\partial y'}}+y''{\frac {\partial L}{\partial y'}})=0\\\Leftrightarrow \\{\frac {dL}{dx}}-{\frac {d}{dx}}\left(y'{\frac {\partial L}{\partial y'}}\right)={\frac {d}{dx}}\left(L-y'{\frac {\partial L}{\partial y'}}\right)=0\end{aligned}}}
and thus Beltrami follows.
References
https://mathworld.wolfram.com/BrachistochroneProblem.html
https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/
http://hades.mech.northwestern.edu/images/e/e6/Legeza-MechofSolids2010.pdf
https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf
https://mate.uprh.edu/~urmaa/reports/brach.pdf The Nonlinear Brachistochrone Problem with Friction
Pablo V. Negr´on–Marrero∗ and B´arbara L. Santiago–Figueroa
https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7
https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf BASICS OF CALCULUS OF VARIATIONS
MARKUS GRASMAIR
http://www.doiserbia.nb.rs/img/doi/0354-5180/2012/0354-51801204697M.pdf
http://info.ifpan.edu.pl/firststep/aw-works/fsV/parnovsky/parnovsky.pdf Some Generalisations of Brachistochrone Problem.
A.S. Parnovsky
[https://arxiv.org/pdf/1604.03021.pdf Tautochrone and Brachistochrone Shape Solutions for
Rocking Rigid Bodies. Patrick Glaschke April 12, 2016]
https://issuu.com/nameou/docs/math_seminar_paper A complete detailed solution to the brachistochrone problem. N. H. Nguyen.
https://arxiv.org/pdf/1908.02224.pdf Brachistochrone on a
velodrome. GP Benham, C Cohen, E Brunet and C Clanet
https://arxiv.org/pdf/1712.04647.pdf On the brachistochrone of a fluid-filled
cylinder. Srikanth Sarma Gurram, Sharan Raja, Pallab Sinha Mahapatra and Mahesh V. Panchagnula.
https://arxiv.org/pdf/1001.2181.pdf A Detailed Analysis of the Brachistochrone Problem
R.Coleman
https://math.stackexchange.com/questions/3068293/euler-lagrange-equation-for-the-brachistochrone-problem-with-friction
https://math.stackexchange.com/questions/3685969/brachistochrone-problem-including-friction-reducing-a-differential-equation
https://www.jstor.org/stable/2974953?seq=1#metadata_info_tab_contents Exploring the Brachistochrone Problem. LaDawn Haws and Terry Kiser
https://math.stackexchange.com/questions/3077935/solving-the-euler-lagrange-equation-for-the-brachistochrone-problem-with-frictio .