Brachistochrone: Difference between revisions
From wikiluntti
(→Theory) |
|||
Line 13: | Line 13: | ||
\frac12 mv^2 = mgy | \frac12 mv^2 = mgy | ||
</math>. | </math>. | ||
giving <math>v = \sqrt{2gy}</math>. Plugging these in, we get <math>t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'^{2}}{2gy}}dx = \int_{P_a}^{P_b} f dx</math>, where <math>f</math> is the function subject to variational consideration. | giving <math>v = \sqrt{2gy}</math>. Plugging these in, we get <math>t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'^{2}}{2gy}}dx = \int_{P_a}^{P_b} f dx</math>, where <math>f(y,y')</math> is the function subject to variational consideration. | ||
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> is satisfied. | According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> is satisfied. |
Revision as of 19:52, 16 February 2021
Introduction
To find the shape of the curve which the time is shortest possible. . .
Theory
The time from to is where is the Pythagorean distance measure and is determined from the the law of conservation of energy . giving . Plugging these in, we get , where is the function subject to variational consideration.
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation is satisfied.
No Friction
We get . Because the previous statement do not contain explicit , the derivative is zero, thus giving
Because ,
Friction
Rolling Ball
References
https://mathworld.wolfram.com/BrachistochroneProblem.html
https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/