Brachistochrone: Difference between revisions

From wikiluntti
Line 13: Line 13:
\frac12 mv^2 = mgy  
\frac12 mv^2 = mgy  
</math>.
</math>.
giving <math>v = \sqrt{2gy}</math>. Plugging these in, we get <math>t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'2}{2gy}}dx = \int_{P_a}^{P_b} f dx</math>, where <math>f</math> is the function subject to variational consideration.  
giving <math>v = \sqrt{2gy}</math>. Plugging these in, we get <math>t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'^{2}}{2gy}}dx = \int_{P_a}^{P_b} f dx</math>, where <math>f</math> is the function subject to variational consideration.  


According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> is satisfied.  
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> is satisfied.  

Revision as of 19:31, 16 February 2021

Introduction

To find the shape of the curve which the time is shortest possible. . .

Theory

The time from to is where is the Pythagorean distance measure and is determined from the the law of conservation of energy . giving . Plugging these in, we get , where is the function subject to variational consideration.

According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation is satisfied.

No Friction

We get


Because ,

Friction

Rolling Ball

References

https://mathworld.wolfram.com/BrachistochroneProblem.html

https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/