Qiskit: Difference between revisions

From wikiluntti
Line 128: Line 128:
</math>. This matrix swaps the amplitudes of  |01⟩  and  |11⟩  in the statevector.
</math>. This matrix swaps the amplitudes of  |01⟩  and  |11⟩  in the statevector.


CNOT if a control qubit is on the superposition: <math>\text{CNOT}|0{+}\rangle = \tfrac{1}{\sqrt{2}}(|00\rangle + |11\rangle)</math>, which is ''Bell State''. Entanglement, but [https://arxiv.org/abs/quant-ph/0212023 no-communication theorem].
CNOT if a control qubit is on the superposition:  
 
<math>\text{CNOT}|0{+}\rangle = \tfrac{1}{\sqrt{2}}(|00\rangle + |11\rangle)</math>, which is ''Bell State''. Entanglement, but [https://arxiv.org/abs/quant-ph/0212023 no-communication theorem].
 
<math>\text{CNOT}|-0\rangle = |-0}rangle</math>
 
<math>\text{CNOT}|-1\rangle = -|-1}rangle</math>


<math>\text{CNOT}|++\rangle = |++\rangle)</math>. Unchanged.
<math>\text{CNOT}|++\rangle = |++\rangle)</math>. Unchanged.

Revision as of 20:54, 21 November 2020

Introduction

https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/challenges/fall-2020

https://quantum-computing.ibm.com/jupyter/user/IBMQuantumChallenge2020/week-1/ex_1a_en.ipynb

Theory

Installation

Installation https://qiskit.org/documentation/install.html

conda create -n qiskit python=3
conda activate qiskit
pip install qiskit _OR_ pip install qiskit[visualization]

Setting Up Qiskit

https://qiskit.org/textbook/ch-states/representing-qubit-states.html

qc = QuantumCircuit(1)  # Create a quantum circuit with one qubit
initial_state = [0,1]   # Define initial_state as |1>
qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit
qc.draw('text')  # Let's view our circuit (text drawing is required for the 'Initialize' gate due to a known bug in qiskit)
result = execute(qc,backend).result() # Do the simulation, returning the result
out_state = result.get_statevector()
print(out_state) # Display the output state vector
qc.measure_all()
qc.draw()
result = execute(qc,backend).result()
counts = result.get_counts()
plot_histogram(counts)

Take superposition as initial state

initial_state = [1/sqrt(2), 1j/sqrt(2)]  # Define state |q>

The Bloch Sphere

from qiskit_textbook.widgets import plot_bloch_vector_spherical
coords = [pi/2,0,1] # [Theta, Phi, Radius]
plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates

Qiskit allows measuring in the Z-basis, only.

Quantum Gates

Identity gate.

Pauli X gate.

Pauli Y gate

Pauli Z gate

Hadamard gate

R gate

S gate or gate

T gate

U1 gate:

U2 gate:

qc = QuantumCircuit(1)
qc.x(0)
#qc.y(0) # Y-gate on qubit 0
#qc.z(0) # Z-gate on qubit 0
#qc.rz(pi/4, 0)
#qc.s(0)   # Apply S-gate to qubit 0
#qc.sdg(0) # Apply Sdg-gate to qubit 0
qc.t(0)   # Apply T-gate to qubit 0
qc.tdg(0) # Apply Tdg-gate to qubit 0

qc.draw('mpl')
# Let's see the result
backend = Aer.get_backend('statevector_simulator')
out = execute(qc,backend).result().get_statevector()
plot_bloch_multivector(out)


Multiple Qubits

Eg. .

backend = Aer.get_backend('unitary_simulator')
unitary = execute(qc,backend).result().get_unitary()
#
# In Jupyter Notebooks we can display this nicely using Latex.
# If not using Jupyter Notebooks you may need to remove the 
# array_to_latex function and use print(unitary) instead.
from qiskit_textbook.tools import array_to_latex
array_to_latex(unitary, pretext="\\text{Circuit = }\n")

Eg. CNOT is a conditional gate that performs an X-gate on the second qubit, if the state of the first qubit (control) is . . This matrix swaps the amplitudes of |01⟩ and |11⟩ in the statevector.

CNOT if a control qubit is on the superposition:

, which is Bell State. Entanglement, but no-communication theorem.

Failed to parse (syntax error): {\displaystyle \text{CNOT}|-0\rangle = |-0}rangle}

Failed to parse (syntax error): {\displaystyle \text{CNOT}|-1\rangle = -|-1}rangle}

. Unchanged.

. Affects the state of the control qubit, only.

qc = QuantumCircuit(2)
# Apply H-gate to the first:
qc.h(0)
# Apply a CNOT:
qc.cx(0,1)
qc.draw()
#
# Let's see the result:
backend = Aer.get_backend('statevector_simulator')
final_state = execute(qc,backend).result().get_statevector()
# Print the statevector neatly:
array_to_latex(final_state, pretext="\\text{Statevector = }")
#
results = execute(qc,backend).result().get_counts()
plot_histogram(results)



Exercises

Week 1

Week 2

Week 3