Water molecule bond length: Difference between revisions

From wikiluntti
Line 5: Line 5:
=== Newton Equations ===
=== Newton Equations ===
<math>F = ma</math> where <math>F = - \nabla V</math>. The system is 1D, thus gradient will be differential, and <math>F= - \frac{d V}{dx}</math>.
<math>F = ma</math> where <math>F = - \nabla V</math>. The system is 1D, thus gradient will be differential, and <math>F= - \frac{d V}{dx}</math>.
=== Potential Function ===
[https://en.wikipedia.org/wiki/Lennard-Jones_potential Lennard--Jones potential] with parameters for [https://en.wikipedia.org/wiki/Water_model TIPS] model:
<math>
V(x) = 4\epsilon \left[ \left( \frac\sigma r\right)^{12} - \left( \frac \sigma r\right)^6 \right]
</math>
<math>
\begin{align}
A &= 580.0 \times 10^3 kcal A^{12}/mol \\
B &= 525.0 kcal A^6/mol
\end{align}
</math>
where <math>A</math> is Ångströms.




Line 22: Line 40:
a(t) = -\frac{\frac{d}{dx}(V(x(t)))}{m}  
a(t) = -\frac{\frac{d}{dx}(V(x(t)))}{m}  
</math>
</math>
=== Potential Function ===
[https://en.wikipedia.org/wiki/Lennard-Jones_potential Lennard--Jones potential] with parameters for [https://en.wikipedia.org/wiki/Water_model TIPS] model:
<math>
\begin{align}
A &= 580.0 \times 10^3 kcal A^{12}/mol \\
B &= 525.0 kcal A^6/mol
\end{align}
</math>
where <math>A</math> is Ångströms.





Revision as of 22:44, 12 October 2020

Introduction

Classical Mechanics

Newton Equations

where . The system is 1D, thus gradient will be differential, and .

Potential Function

Lennard--Jones potential with parameters for TIPS model:


where is Ångströms.


Integration

The finite differences (Euler method) are

and


Velocity Verlet Algorithm

A very good and easy to implement integration method is velocity Verlet:

Temperature/ Initial distribution

The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature

Results

Issues

1D statement