Water molecule bond length: Difference between revisions
From wikiluntti
No edit summary |
|||
Line 28: | Line 28: | ||
<math> | <math> | ||
\begin{align | \begin{align} | ||
x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\ | x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\ | ||
v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t | v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t | ||
\end{align | \end{align} | ||
</math> | </math> | ||
=== Potential Function === | === Potential Function === |
Revision as of 22:39, 12 October 2020
Introduction
Classical Mechanics
Newton Equations
where .
Integration
The finite differences (Euler method) are
Failed to parse (syntax error): {\displaystyle \begin{align*} v(t) &= \frac{x(t+\Delta t) - x(t)}{\Delta t} \\ a(t) &= \frac{v(t+\Delta t) - v(t)}{\Delta t} \end{align*} } and
Velocity Verlet Algorithm
A very good and easy to implement integration method is velocity Verlet:
Potential Function
Lennard--Jones potential with parameters for TIPS model:
Failed to parse (syntax error): {\displaystyle \begin{align*} A &= 580.0 \times 10^3 kcal A^{12}/mol \\ B &= 525.0 kcal A^6/mol \end{align*} } where is Ångströms.
Temperature/ Initial distribution
The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature
Results
Issues
1D statement