Integer division that rounds up: Difference between revisions
(→Proof) |
(→Proof) |
||
| Line 14: | Line 14: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\left \ | \left \lfloor \frac{x+y-1}{y} \right \rfloor | ||
&= | &= | ||
\left \ | \left \lfloor \frac{x}{y} + \frac{y-1}y \right \rfloor \\ | ||
&= | &= | ||
\left \ | \left \lfloor \frac{ay}{y} + \frac{y-1}y \right \rfloor \\ | ||
&= | &= | ||
\frac{ay}{y} \\ | \frac{ay}{y} \\ | ||
Revision as of 10:11, 8 July 2024
Introduction
Usual integer division rounds down: for . To round up (if overflow is not an issue), you can use following algorithm with the usual roundig down division:
Proof
Proof is in two parts; 1st if divides , and if not. Note that usual integer division rounds down.
Part 1. If divides Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=ay} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in\mathbb N_+} . Thus we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left \lfloor \frac{x+y-1}{y} \right \rfloor &= \left \lfloor \frac{x}{y} + \frac{y-1}y \right \rfloor \\ &= \left \lfloor \frac{ay}{y} + \frac{y-1}y \right \rfloor \\ &= \frac{ay}{y} \\ &= \frac{x}{y} \end{align} }
because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leq \frac{y-1}y < 1} . This part is ok.
Part 2. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} does not divide Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=by + r} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\in\mathbb N_+} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<r<b-1} . Thus we have