Basics of Structural Analysis: Difference between revisions

From wikiluntti
Line 107: Line 107:


Diameter <math>D=66</math> mm. Thickness <math>t</math> is to be determined. <math>P</math> is the pressure of the can, or the force acting on the can.
Diameter <math>D=66</math> mm. Thickness <math>t</math> is to be determined. <math>P</math> is the pressure of the can, or the force acting on the can.
{| class="wikitable"
|+ The Young's modulus
|-
! Fiber type !! Tensile strength [MPa] !! Compressive strength [MPa] !! Young's modulus E [GPa]
|-
| E || 3445 || 1080 || 76
|-
| C || 3300 || - || 69
|-
| S-2 || 4890 || 1600 || 85.5
|}


== References ==
== References ==

Revision as of 16:50, 20 January 2024

Introduction

Structural analysis using about high school level physics and maths.

Aim to calculate fiberglass cansat structure

Basic theory

Principle of superposition: linearity. Displacement at location Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} from forces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1} and </math>P_2</math> located at different positions is calculated as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_B = \Delta_{BP_1} + \Delta_{BP_2}}

The energy principle: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dW = Fd\Delta} giving the total energy as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W = \int_0^\Delta Fd\Delta} which is called strain energy. For linear deformation this gives Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=\tfrac12 F\Delta} .

Virtual work principle.

Dead loads, live loads, impact loads (impact factor), wind loads.

Equilibrium.

Forces:

  • Normal force and axial force (out-of-plane forces, in-plane forces)
  • Shearing force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{V(x)}{x} = -w(x) } . Thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta V =\int w(x) dx } . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w(x)} is the intensity of applied (normal?) force.
  • Bending moment Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dM}{dx} = V(x)} and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2M}{dx^2} = -w(x)} .
  • Torsion (of a plate)
  • Curvature and twist

Hooke's law hold for linear elastic material: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \frac{\sigma}{E}} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the bending stress. The force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta P} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta P = \sigma \delta A} .

Buckling is a process by which a structure cannot withstand loads so it must change its shape. Stable equilibrium is when the force (pressure) applied doesn't reach the critical load, allowing the structure to return to its original equilibrium.

Plate

  • Torsion (of a plate)
  • Curvature and twist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{xy}} .

Curvature in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_x = \frac1{R_x}} is the rate of change of the slope with respect to arch length, giving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_x = \frac{\frac{\partial^2 w}{\partial x^2}} {\sqrt{(1 + \left(\frac{\partial w}{\partial x} \right)^2}^3} }


Strains in a plate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{xx}} .

Von Kármán strains.

Beam

Forces:

  • Normal force and axial force
  • Shearing force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{V(x)}{x} = -w(x) } . Thus we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta V =\int w(x) dx } . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w(x)} is the intensity of applied (normal?) force.
  • Bending moment and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2M}{dx^2} = -w(x)} .

Deflection of beams

The deflection of a beam.

The strain in the filament is due to the different lengths of filaments in bended beam. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \frac{\ell_1 - \ell}{\ell} = \frac{\Delta y}{R}} which for linear elastic material (using Hooke's law) gives where is bending stress



Radius of curvature , and .

Column

Column is a vertical beam.

Cylindrical Pipe

Axial stress

The force due to the pressure is

The axial stress is

The pressure effect

The longitudinal stress and hoop (radial) stress.


where is the internal pressure, is the mean diameter of cylinder and is the wall thickness. Also, .

Applying Hooke's law and the fact that we get

where is the Poisson's ratio and is the Young's modulus.

Buckling of cylinders

The differential equation of the classical buckling theory of a thin-walled shell. . .

Analytic solution.

Glassfiber Cansat

The longitudinal stress (force per unit area) is , where is the Young's modulus and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} is called strain (the relative deformation, )

Diameter mm. Thickness is to be determined. is the pressure of the can, or the force acting on the can.


The Young's modulus
Fiber type Tensile strength [MPa] Compressive strength [MPa] Young's modulus E [GPa]
E 3445 1080 76
C 3300 - 69
S-2 4890 1600 85.5

References

https://scholarshare.temple.edu/bitstream/handle/20.500.12613/7150/Udoeyo-Textbook-2020.pdf?sequence=1

https://tiij.org/issues/issues/spring2006/12_Dues-Accepted/Dues.pdf

https://core.ac.uk/download/pdf/10851171.pdf

https://www.sciencedirect.com/science/article/abs/pii/S0263823101000660 Paywall