Eksperimentti: hyppykorkeuden määrittäminen impulssilla: Difference between revisions

From wikiluntti
 
(14 intermediate revisions by the same user not shown)
Line 17: Line 17:
   &= \frac{v_0^2}{g} - \tfrac12 \frac{v_0^2}{g} \\
   &= \frac{v_0^2}{g} - \tfrac12 \frac{v_0^2}{g} \\
   &= \frac{v_0^2}{2g} \\
   &= \frac{v_0^2}{2g} \\
   &= \frac{J^2}{2gm^2}
   &= \frac{J^2}{2gm^2} = \frac{1}{2g} \left( \frac Jm \right)^2
\end{align}
\end{align}
</math>
</math>
Note that <math>J/m = v_0</math>, and thus the equation gives the correct equation.


=== Example ===
=== Example ===


The example gives
The example gives
<math>
<math>
\begin{align*}
\begin{align}
m &= 880 N /9.81 = 89.7 kg \\
m &= 880 N /9.81 = 89.7 kg \\
J &= 900 Ns
J &= 464 Ns - 89.7 kg \times 9.81 \times 0.2895 s = 464 Ns - 254.75 Ns = 209.25 Ns
\end{align*}
\end{align}
</math>


and thus we have
and thus we have
Line 35: Line 39:
\begin{align}
\begin{align}
h &= \frac{J^2}{2gm^2} \\
h &= \frac{J^2}{2gm^2} \\
   &= \frac{(900 Ns)^2}{2 \times 9.81 m/s^2 \times (89.7 kg)^2 } \\
   &= \frac{(209.25 Ns)^2}{2 \times 9.81 m/s^2 \times (89.7 kg)^2 } \\
   &= \frac{810000}{8046.09} \\
   &= \frac{43785.5625}{315 728.5716} \\
   &= 100.67 m\\
   &= 0.139 m\\
\end{align}
\end{align}
</math>
</math>
The takeoff velocity is <math>v_0 = \frac Jm = \frac{209.25 Ns}{89.7 kg} = 2.33 m/s</math>.
== Example 2: Zero the force plate ==


== References ==
== References ==

Latest revision as of 18:16, 3 May 2022

Introduction

Force exerted on the force plate

Jumping on the force plate you can feel the force. We use time of flight method to estimate the height of the jump.

Theory

Impulse . Actually is our takeoff speed because , and we have . Because and thus we have because and . However, for the velocity we have and at the maximum height we have that , and thus and . Combining these two we have

Note that , and thus the equation gives the correct equation.

Example

The example gives

and thus we have

The takeoff velocity is .

Example 2: Zero the force plate

References

https://www.thehoopsgeek.com/the-physics-of-the-vertical-jump/

https://www.brunel.ac.uk/~spstnpl/LearningResources/VerticalJumpLab.pdf