Brachistochrone: Difference between revisions

From wikiluntti
 
(147 intermediate revisions by the same user not shown)
Line 2: Line 2:


To find the shape of the curve which the time is shortest possible. . .
To find the shape of the curve which the time is shortest possible. . .
We use WxMaxima to do the calculus part.


== Theory ==
== Theory ==
Line 7: Line 9:
=== Variational Calculus and Euler--Lagrange Equation ===
=== Variational Calculus and Euler--Lagrange Equation ===


The time from <math>P_a</math> to <math>P_b</math> is
The time that is needed for sliding from point <math>P_a</math> to point <math>P_b</math> is
<math>
<math>
t = \int_{P_a}^{P_b} \frac 1 v ds
t = \int_{P_a}^{P_b} \frac 1 v ds
Line 14: Line 16:
<math>
<math>
\frac12 mv^2 = mgy  
\frac12 mv^2 = mgy  
</math>.
</math>
giving <math>v = \sqrt{2gy}</math>. Plugging these in, we get <math>t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'^{2}}{2gy}}dx = \int_{P_a}^{P_b} f dx</math>, where <math>f=f(y,y')</math> is the function subject to variational consideration.
giving <math>v = \sqrt{2gy}</math>. Plugging these in, we get  
 
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> is satisfied.


=== No Friction ===
<math>t = \int_{P_a}^{P_b} \sqrt{\frac{1+y'^{2}}{2gy}}dx = \int_{P_a}^{P_b} f dx</math>,


We get
where <math>f=f(y,y')</math> is the function subject to variational consideration.


<math>
According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> is satisfied.
\frac{\partial f}{\partial y'}
=
\frac{\partial }{\partial y'}  
\sqrt{\frac{1+y'^{2}}{2gy}}
=
\frac1{\sqrt{2gy}}
\frac{\partial }{\partial y'}  
\sqrt{1+y'^{2}}
=
\frac{2y'}{\sqrt{2gy}}
\frac1 {2\sqrt{1+y'^{2}}}
</math>.  


Since <math>f</math> does not depend on <math>x</math>, we may use the simplified E--L formula <math>f-y' \frac{\partial f}{\partial y'}= \text{Constant}</math>.
== No Friction ==


Thus, we have
Since <math>f</math> does not depend on <math>x</math>, we may use the simplified E--L formula <math>f-y' \frac{\partial f}{\partial y'}= </math> Constant.
The differentials are easy, and we have


<math>
<math>
Line 57: Line 46:
y\left( 1 + y'^{2}\right) = \frac1{2gC^2} = k^2  
y\left( 1 + y'^{2}\right) = \frac1{2gC^2} = k^2  
</math>
</math>
 
by redefining the constant. The standard solution to this differential equation is given by
by redefining the constant. The standard solution to this equation is given by


<math>
<math>
Line 69: Line 57:
and is the equation of a cycloid.
and is the equation of a cycloid.


=== Rolling Ball: Angular momentum ===
=== No Friction: Maxima ===
 
The details using WxMaxima:
 
<syntaxhighlight lang="bash">
energy : 1/2*m*v^2 = m*g*y;
v_sol : solve( energy, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y,t)^2)/v_sol );
doof_dooyp : diff( EL_f, 'diff(y,t));
EL: EL_f - 'diff(y,t)*doof_dooyp = C;
radcan(%);
EL_dy : solve(EL, y);
ode2(EL_dy[1]^2,y,t);
</syntaxhighlight>
but the ''ode2'' solver cannot handle the nonlinear differential equation.
 
== Rolling Ball: Angular momentum but no radius ==
 
The rotational energy is <math>E_\text{rot} = \frac12 I \omega^2</math> and by applying non-slipping condition <math>v = \omega r</math> we get <math>E_\text{rot} = \frac {v^2}{2r^2} I</math>. Note that actually the ball is rolling on a curve, and thus the given slipping condition is only an approximation.
 
For the simplified case, the calculation is similar to the previous one, and using Maxima, we get
 
<syntaxhighlight lang="bash">
energy : 1/2*m*v^2 + 1/2*I*v^2/r^2= m*g*y;
. . .
</syntaxhighlight>


The rotational energy is <math>E_\text{rot} = \frac12 I \omega^2</math> and by applying non-slipping condition <math>v = \omega r</math> we get <math>E_\text{rot} = \frac {v^2}{2r^2} I</math>. The conservation energy states
gives


<math>
<math>
\begin{align}
\begin{align}
E_\text{kin} &= E_\text{rot} \\
\frac{\sqrt{m\, {{r}^{2}}+I}}
\frac12 mv^2 + \frac{v^2}{2r^2}I &= mgy \\
{\sqrt{2gmy} r\\sqrt{{{\left( \frac{d}{d t} y\right) }^{2}}+1}}=C
v^2 &= \frac{mgy}{m + I/(2r^2)} \\
&& \Rightarrow &&
&= \frac{2mgr^2}{2m + I}
y( 1 + y'{^2} ) = \frac{mr^2 + I}{2gm r^2C^2 } = k_1^2
\end{align}
\end{align}
</math>
</math>


=== Friction ===
and thus only the constant <math>k_1</math> differs from the case with no angular momentum.
 
== Friction ==


[[File:Brac normalforce.svg|thumb|The forces on the path. Actually the sliding particle is infinitemal small. ]]
[[File:Brac normalforce.svg|thumb|The forces on the path. Actually the sliding particle is infinitemal small. ]]
Line 104: Line 120:
</math>
</math>


Clearly, for the left hand side of NII we have  <math>m\frac{dv}{dt} = mv \frac{dv}{ds} = m\frac12 \frac {d v^2}{ds}</math>, and by including the differential part only, we have
Clearly, for the left hand side of NII we have   
<math>
m\frac{dv}{dt}  
= m \frac{dv}{ds}\frac{ds}{dt}
= m \frac{dv}{ds} v
= mv \frac{dv}{ds}  
= m\frac12 \frac {d v^2}{ds}
</math>, and by including the differential part only, we have


<math>
<math>
Line 116: Line 139:


==== Euler--Lagrange ====
==== Euler--Lagrange ====
<syntaxhighlight lang="bash">
NII : 1/2*v^2 = g*(y(x)-mu*x);
v_sol : solve( NII, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y(x),x)^2)/v_sol );
df_dy : diff(EL_f, y(x));
df_dyp : diff(EL_f, 'diff(y(x),x));
d_dx : diff( df_dyp, x);
EL : df_dy - d_dx = 0;
Elrad : radcan( EL );
num( lhs(ELrad) )/sqrt(2)/sqrt(y(x)-mu*x)=0;
ratsimp(%);
</syntaxhighlight>
<math>
\begin{align}
\left( 2 \mu x-2 \operatorname{y}(x)\right) \, \left( \frac{{{d}^{2}}}{d {{x}^{2}}} \operatorname{y}(x)\right) -\mu {{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{3}}-{{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{2}}-\mu \left( \frac{d}{d x} \operatorname{y}(x)\right) -1=0
\\
2 \left(  y - \mu x \right) y''
+
\left( 1+ \left( y' \right)^2 \right)
\left( 1 + \mu y' \right)
=0
\end{align}
</math>
{{NumBlk|:|<math>x^3 + y^2 + z^2 = 1</math>|{{EquationRef|1}}}}
{{integrate|g(x)}}
=== Reduction ===
Remember that <math>y'' dy = y'd(y')</math>.
Then, note that <math>\frac{d }{dx}\left( y - \mu x \right) = y' - \mu </math>. Thus, we multiply EL equation by <math>y'-\mu</math> to obtain
<math>
- \frac{y'-\mu}{y-\mu x} = \frac{2(y'-\mu) y''}{(1+y'^{2})(1+\mu y')}
</math>
The left hand side can be integrated:
<math>
- \int \frac{y'-\mu}{y-\mu x} dx
=
-\ln |y - \mu x| + C_1
</math>
The right hand side can be integrated using partial fraction decompisition
<math>
\int \frac{2(y'-\mu) y''}{(1+y'^{2})(1+\mu y')} dx
=
\int \frac{2y'}{1+y'^{2}}y'' - \frac{2\mu}{1+\mu y'}y'' dx
=
\ln|1 + y'^{2}| - 2\ln|1 + \mu y'| + C_2
</math>
Together we have
<math>
-\ln |y - \mu x| + C_1
=
\ln|1 + y'^{2}| - 2\ln|1 + \mu y'| + C_2
</math>
that can be written as


<math>
<math>
\frac{\partial f}{\partial y}  
\ln \frac1{ |y - \mu x|}  
- \frac{d}{dt}\frac{\partial f}{\partial y'}  
=
=0
\ln \frac{ 1 + y'^{2} } {( 1 + \mu y' )^2} + C_3
</math>
</math>
and it gives finally


<math>
<math>
\begin{align}
\begin{align}
\frac{\partial f}{\partial y}  
\frac C{ y - \mu x}  
&= \sqrt{\frac{1+y'^{2}}{2g}} \frac{\partial}{\partial y} (y-\mu x)^{-1/2} \\
=
&= \sqrt{\frac{1+y'^{2}}{2g}} \frac{-1} { 2(y-\mu x)^{3/2} } \\
\frac{ 1 + y'^{2} } {( 1 + \mu y' )^2}  
&= - \frac1{2(y-\mu x)} \sqrt{\frac{1+y'^{2}}{2g(y-\mu x)}}  \\
\iff
(1 + \mu y' )^2  
= C (y - \mu x ) ( 1 + y'^{2} )
\end{align}
\end{align}
</math>
</math>


<pre>
depends(y,x );
EL: 2*( y - mu*x )*diff( y,x,2) + (1 + diff(y,x)^2)*(1+mu*diff(y,x)) = 0;
factor( ratsimp(solve(EL, diff(y,x,2))*(diff(y,x)-mu)*2/(1+diff(y,x)^2)/(1+mu*diff(y,x))) );
eq1 : integrate( rhs( EL_2[1]),x) + log(C);
eq2 : integrate( partfrac( lhs( EL_2[1]), diff(y,x) ), x);
exp(eq1)=exp(eq2);
</pre>
=== Solution ===
The solution can be obtained by setting <math>y' = \tfrac{dy}{dx} = \cot(\tfrac12 \theta)</math> which implies <math>dx = \tan \tfrac12 \theta dy</math> and we have <math>1+y'^{2} = \sin^{-2} \tfrac{\theta}{2} </math>.
We solve for <math>x</math>, and get


<math>
<math>
\begin{align}
y - \mu x = C \frac{(1+\mu y')^2}{1+y'^{2}}  
\frac{\partial f}{\partial y'}
= C \left( \sin\frac\theta 2 + \mu \cos\frac\theta2 \right)^2
&= \frac1{\sqrt{2g(y-\mu x)}\frac{\partial}{\partial y} \sqrt{1+y'^{2}} \\
</math>
&= \frac{y' }{2\sqrt{2g(y-\mu x)} \sqrt{1+y'^{2}} }   \\
 
 
If <math>\mu=0</math> which means no friction, we get <math>y=C\sin^2(\theta/2) = k (1-\cos(\theta) )</math>, which is the result obtained earlier. 
 
 
<math>\begin{align}
du &= \frac{c}{2}  
\frac{\sin\theta + 2\mu\cos\theta -\mu^2\sin\theta}
{\cot\tfrac12\theta - \mu}d\theta
\\
dy &= \frac{c}{2}
\frac{ \cos\tfrac12\theta ( \sin\theta + 2\mu\cos\theta-\mu^2\sin\theta ) }
{\cos\tfrac12\theta - \mu\sin\tfrac12\theta } d\theta
\end{align}
\end{align}
</math>.
<syntaxhighlight>
oo: (1+mu*cot(t/2))^2/(1+cot(t/2)^2);
oo1 : oo, t/2 = s;
trigrat(oo1);
trigexpand(%);
trigsimp(%);
oo2 : expand(%);
part(oo2,1) + part(oo2,2) + trigsimp( part(oo2, 3) + part(oo2,4) );
oo3 : factor(%);
oo3, s = t/2;
</syntaxhighlight>
Maxima:
* trigreduce : product of sinuses and cosines as a Fourier sum (with terms containing only a single sin or cos).
* trigexpand : no multiple angles. Uses sum-of-angles formulas
* trigsimp : Pythagorean identity
* substitution, eg. eq1, 2*x = y;
* trigrat : does many things?
== Rolling Ball with radius ==
<math>
\omega = \frac{r_\text{curve}+r}{r}\frac{d \alpha}{d t} - \frac{d\alpha}{dt}
=
\frac{\rho}{r} \frac{d\alpha}{dt}
=
\frac{v}{r}
</math>
</math>


The conservation of energy:


<math>
<math>
\begin{align}
mgy = \frac12 mv^2 + \frac12 \frac25 m r^2 v^2/r^2
\frac{d}{dt}\frac{\partial f}{\partial y'}
&= \frac{-\left( 2 y''\sqrt{2g(y-\mu x)} \frac{y'}{\sqrt{1+y'^{2}}} + \sqrt2 g ( y' - \mu x' )\frac{\sqrt{1+y'^{2}}}{\sqrt{g(y-\mu x)}} \right)y'
+ 2\sqrt2 y''\sqrt{y-\mu x}\sqrt{1+y'^{2}} }
{\left( 2 \sqrt{ 2g(y- \mu x) }\sqrt{1+y'^{2}} \right)^2 }
\end{align}
</math>
</math>


Plugging these into EL we have
== Beltrami Indentity ==


E-L states: <math>\frac{\partial L}{\partial y} = \frac{d}{dx}\frac{\partial L}{\partial y'}</math>, but <math>\frac{dL}{dx} = y'\frac{\partial L}{\partial y} + y''\frac{\partial L}{\partial y'} + \frac{\partial L}{\partial x}</math>, and now <math>\partial L/\partial x = 0</math> and by substituting the first result, we have


<math>
<math>
\begin{align}
\begin{align}
- \frac1{2(y-\mu x)} \sqrt{\frac{1+y'^{2}}{2g(y-\mu x)}}  
\frac{d L}{d x}  
&=
- ( y'\frac{d}{dx} \frac{\partial L}{\partial y'}
\frac{-\left( 2 y''\sqrt{2g(y-\mu x)} \frac{y'}{\sqrt{1+y'^{2}}} + \sqrt2 g ( y' - \mu x' )\frac{\sqrt{1+y'^{2}}}{\sqrt{g(y-\mu x)}} \right)y'
+ y''\frac{\partial L}{\partial y'}
+ 2\sqrt2 y''\sqrt{y-\mu x}\sqrt{1+y'^{2}} }
) = 0
{\left( 2 \sqrt{ 2g(y- \mu x) }\sqrt{1+y'^{2}} \right)^2 } \\
\\
\Leftrightarrow
\\
\\
- \frac1{2(y-\mu x)} \sqrt{\frac{1+y'^{2}}{2g(y-\mu x)}}  
\frac{dL}{dx} - \frac{d}{dx} \left( y' \frac{\partial L}{\partial y'} \right)
4 \times 2g(y- \mu x) (1+y'^{2})
=
&=
\frac{d}{dx}\left( L - y' \frac{\partial L}{\partial y'}\right)
-\left( 2 y''\sqrt{2g(y-\mu x)} \frac{y'}{\sqrt{1+y'^{2}}} + \sqrt2 g ( y' - \mu x' )\frac{\sqrt{1+y'^{2}}}{\sqrt{g(y-\mu x)}} \right)y'
= 0
+ 2\sqrt2 y''\sqrt{y-\mu x}\sqrt{1+y'^{2}} \\
\end{align}
\end{align}
</math>
</math>


=== Rolling Ball with radius ===
and thus Beltrami follows.


== References ==
== References ==
Line 181: Line 336:


https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf
https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf
https://mate.uprh.edu/~urmaa/reports/brach.pdf The Nonlinear Brachistochrone Problem with Friction
Pablo V. Negr´on–Marrero∗ and B´arbara L. Santiago–Figueroa
https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7
https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf BASICS OF CALCULUS OF VARIATIONS
MARKUS GRASMAIR
http://www.doiserbia.nb.rs/img/doi/0354-5180/2012/0354-51801204697M.pdf
http://info.ifpan.edu.pl/firststep/aw-works/fsV/parnovsky/parnovsky.pdf Some Generalisations of Brachistochrone Problem.
A.S. Parnovsky
[https://arxiv.org/pdf/1604.03021.pdf Tautochrone and Brachistochrone Shape Solutions for
Rocking Rigid Bodies. Patrick Glaschke April 12, 2016]
https://issuu.com/nameou/docs/math_seminar_paper A complete detailed solution to the brachistochrone problem. N. H. Nguyen.
https://arxiv.org/pdf/1908.02224.pdf Brachistochrone on a
velodrome. GP Benham, C Cohen, E Brunet and C Clanet
https://arxiv.org/pdf/1712.04647.pdf On the brachistochrone of a fluid-filled
cylinder. Srikanth Sarma Gurram, Sharan Raja, Pallab Sinha Mahapatra and Mahesh V. Panchagnula.
https://arxiv.org/pdf/1001.2181.pdf A Detailed Analysis of the Brachistochrone Problem
R.Coleman
https://math.stackexchange.com/questions/3068293/euler-lagrange-equation-for-the-brachistochrone-problem-with-friction
https://math.stackexchange.com/questions/3685969/brachistochrone-problem-including-friction-reducing-a-differential-equation
https://www.jstor.org/stable/2974953?seq=1#metadata_info_tab_contents Exploring the Brachistochrone Problem. LaDawn Haws and Terry Kiser
https://math.stackexchange.com/questions/3077935/solving-the-euler-lagrange-equation-for-the-brachistochrone-problem-with-frictio.

Latest revision as of 16:36, 22 March 2021

Introduction

To find the shape of the curve which the time is shortest possible. . .

We use WxMaxima to do the calculus part.

Theory

Variational Calculus and Euler--Lagrange Equation

The time that is needed for sliding from point to point is where is the Pythagorean distance measure and is determined from the the law of conservation of energy giving . Plugging these in, we get

,

where is the function subject to variational consideration.

According to the Euler--Lagrange differential equation the stationary value is to be found, if E-L equation is satisfied.

No Friction

Since does not depend on , we may use the simplified E--L formula Constant. The differentials are easy, and we have

So we have and multiplying this with the denominator and rearring, we have by redefining the constant. The standard solution to this differential equation is given by

and is the equation of a cycloid.

No Friction: Maxima

The details using WxMaxima:

energy : 1/2*m*v^2 = m*g*y;
v_sol : solve( energy, v);
v_sol : v_sol[2];
EL_f : rhs( sqrt(1+'diff(y,t)^2)/v_sol );
doof_dooyp : diff( EL_f, 'diff(y,t));
EL: EL_f - 'diff(y,t)*doof_dooyp = C;
radcan(%);
EL_dy : solve(EL, y);
ode2(EL_dy[1]^2,y,t);

but the ode2 solver cannot handle the nonlinear differential equation.

Rolling Ball: Angular momentum but no radius

The rotational energy is and by applying non-slipping condition we get . Note that actually the ball is rolling on a curve, and thus the given slipping condition is only an approximation.

For the simplified case, the calculation is similar to the previous one, and using Maxima, we get

energy : 1/2*m*v^2 + 1/2*I*v^2/r^2= m*g*y;
. . .

gives

and thus only the constant differs from the case with no angular momentum.

Friction

The forces on the path. Actually the sliding particle is infinitemal small.

The normal force follows the path, and thus is given by , but The friction depends on the normal force of the path. The normal force is perpendicular to the previous, thus we have

The conservation of energy does not apply here, but we have Newton's Second Law, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec F = m \frac{d \vec v}{dt}} . We need the components along the curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} . Thus we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \vec F &= \vec G - \vec F_\mu \\ &= mg \frac{dy}{ds} - \mu mg \frac{dx}{ds} \end{align} }

Clearly, for the left hand side of NII we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{dv}{dt} = m \frac{dv}{ds}\frac{ds}{dt} = m \frac{dv}{ds} v = mv \frac{dv}{ds} = m\frac12 \frac {d v^2}{ds} } , and by including the differential part only, we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac12 v^2 &= g( y - \mu x ) \\ v&= \sqrt{2g(y-\mu x)} \end{align} }

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} for the Euler--Lagrange equation is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f = \sqrt{ \frac{1+y'^{2}}{2g(y-\mu x)} } }

Euler--Lagrange

NII : 1/2*v^2 = g*(y(x)-mu*x);

v_sol : solve( NII, v);
v_sol : v_sol[2];

EL_f : rhs( sqrt(1+'diff(y(x),x)^2)/v_sol );
df_dy : diff(EL_f, y(x));
df_dyp : diff(EL_f, 'diff(y(x),x));
d_dx : diff( df_dyp, x);


EL : df_dy - d_dx = 0; 
Elrad : radcan( EL );

num( lhs(ELrad) )/sqrt(2)/sqrt(y(x)-mu*x)=0;
ratsimp(%);

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left( 2 \mu x-2 \operatorname{y}(x)\right) \, \left( \frac{{{d}^{2}}}{d {{x}^{2}}} \operatorname{y}(x)\right) -\mu {{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{3}}-{{\left( \frac{d}{d x} \operatorname{y}(x)\right) }^{2}}-\mu \left( \frac{d}{d x} \operatorname{y}(x)\right) -1=0 \\ 2 \left( y - \mu x \right) y'' + \left( 1+ \left( y' \right)^2 \right) \left( 1 + \mu y' \right) =0 \end{align} }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b \! f(x)\,dx \,}

Reduction

Remember that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'' dy = y'd(y')} . Then, note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d }{dx}\left( y - \mu x \right) = y' - \mu } . Thus, we multiply EL equation by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'-\mu} to obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \frac{y'-\mu}{y-\mu x} = \frac{2(y'-\mu) y''}{(1+y'^{2})(1+\mu y')} }

The left hand side can be integrated:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \int \frac{y'-\mu}{y-\mu x} dx = -\ln |y - \mu x| + C_1 }

The right hand side can be integrated using partial fraction decompisition

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{2(y'-\mu) y''}{(1+y'^{2})(1+\mu y')} dx = \int \frac{2y'}{1+y'^{2}}y'' - \frac{2\mu}{1+\mu y'}y'' dx = \ln|1 + y'^{2}| - 2\ln|1 + \mu y'| + C_2 }

Together we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\ln |y - \mu x| + C_1 = \ln|1 + y'^{2}| - 2\ln|1 + \mu y'| + C_2 }

that can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln \frac1{ |y - \mu x|} = \ln \frac{ 1 + y'^{2} } {( 1 + \mu y' )^2} + C_3 }

and it gives finally

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac C{ y - \mu x} = \frac{ 1 + y'^{2} } {( 1 + \mu y' )^2} \iff (1 + \mu y' )^2 = C (y - \mu x ) ( 1 + y'^{2} ) \end{align} }

depends(y,x );
EL: 2*( y - mu*x )*diff( y,x,2) + (1 + diff(y,x)^2)*(1+mu*diff(y,x)) = 0;

factor( ratsimp(solve(EL, diff(y,x,2))*(diff(y,x)-mu)*2/(1+diff(y,x)^2)/(1+mu*diff(y,x))) );

eq1 : integrate( rhs( EL_2[1]),x) + log(C);
eq2 : integrate( partfrac( lhs( EL_2[1]), diff(y,x) ), x);

exp(eq1)=exp(eq2);

Solution

The solution can be obtained by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' = \tfrac{dy}{dx} = \cot(\tfrac12 \theta)} which implies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx = \tan \tfrac12 \theta dy} and we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+y'^{2} = \sin^{-2} \tfrac{\theta}{2} } .

We solve for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , and get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y - \mu x = C \frac{(1+\mu y')^2}{1+y'^{2}} = C \left( \sin\frac\theta 2 + \mu \cos\frac\theta2 \right)^2 }


If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=0} which means no friction, we get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=C\sin^2(\theta/2) = k (1-\cos(\theta) )} , which is the result obtained earlier.


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} du &= \frac{c}{2} \frac{\sin\theta + 2\mu\cos\theta -\mu^2\sin\theta} {\cot\tfrac12\theta - \mu}d\theta \\ dy &= \frac{c}{2} \frac{ \cos\tfrac12\theta ( \sin\theta + 2\mu\cos\theta-\mu^2\sin\theta ) } {\cos\tfrac12\theta - \mu\sin\tfrac12\theta } d\theta \end{align} } .


oo: (1+mu*cot(t/2))^2/(1+cot(t/2)^2);
oo1 : oo, t/2 = s;
trigrat(oo1);
trigexpand(%);
trigsimp(%);
oo2 : expand(%);
part(oo2,1) + part(oo2,2) + trigsimp( part(oo2, 3) + part(oo2,4) );
oo3 : factor(%);
oo3, s = t/2;

Maxima:

  • trigreduce : product of sinuses and cosines as a Fourier sum (with terms containing only a single sin or cos).
  • trigexpand : no multiple angles. Uses sum-of-angles formulas
  • trigsimp : Pythagorean identity
  • substitution, eg. eq1, 2*x = y;
  • trigrat : does many things?

Rolling Ball with radius

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega = \frac{r_\text{curve}+r}{r}\frac{d \alpha}{d t} - \frac{d\alpha}{dt} = \frac{\rho}{r} \frac{d\alpha}{dt} = \frac{v}{r} }

The conservation of energy:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle mgy = \frac12 mv^2 + \frac12 \frac25 m r^2 v^2/r^2 }

Beltrami Indentity

E-L states: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial L}{\partial y} = \frac{d}{dx}\frac{\partial L}{\partial y'}} , but Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dL}{dx} = y'\frac{\partial L}{\partial y} + y''\frac{\partial L}{\partial y'} + \frac{\partial L}{\partial x}} , and now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial L/\partial x = 0} and by substituting the first result, we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d L}{d x} - ( y'\frac{d}{dx} \frac{\partial L}{\partial y'} + y''\frac{\partial L}{\partial y'} ) = 0 \\ \Leftrightarrow \\ \frac{dL}{dx} - \frac{d}{dx} \left( y' \frac{\partial L}{\partial y'} \right) = \frac{d}{dx}\left( L - y' \frac{\partial L}{\partial y'}\right) = 0 \end{align} }

and thus Beltrami follows.

References

https://mathworld.wolfram.com/BrachistochroneProblem.html

https://physicscourses.colorado.edu/phys3210/phys3210_sp20/lecture/lec04-lagrangian-mechanics/

http://hades.mech.northwestern.edu/images/e/e6/Legeza-MechofSolids2010.pdf

https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf

https://mate.uprh.edu/~urmaa/reports/brach.pdf The Nonlinear Brachistochrone Problem with Friction Pablo V. Negr´on–Marrero∗ and B´arbara L. Santiago–Figueroa

https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7

https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf BASICS OF CALCULUS OF VARIATIONS MARKUS GRASMAIR

http://www.doiserbia.nb.rs/img/doi/0354-5180/2012/0354-51801204697M.pdf

http://info.ifpan.edu.pl/firststep/aw-works/fsV/parnovsky/parnovsky.pdf Some Generalisations of Brachistochrone Problem. A.S. Parnovsky

[https://arxiv.org/pdf/1604.03021.pdf Tautochrone and Brachistochrone Shape Solutions for Rocking Rigid Bodies. Patrick Glaschke April 12, 2016]

https://issuu.com/nameou/docs/math_seminar_paper A complete detailed solution to the brachistochrone problem. N. H. Nguyen.

https://arxiv.org/pdf/1908.02224.pdf Brachistochrone on a velodrome. GP Benham, C Cohen, E Brunet and C Clanet

https://arxiv.org/pdf/1712.04647.pdf On the brachistochrone of a fluid-filled cylinder. Srikanth Sarma Gurram, Sharan Raja, Pallab Sinha Mahapatra and Mahesh V. Panchagnula.

https://arxiv.org/pdf/1001.2181.pdf A Detailed Analysis of the Brachistochrone Problem R.Coleman

https://math.stackexchange.com/questions/3068293/euler-lagrange-equation-for-the-brachistochrone-problem-with-friction

https://math.stackexchange.com/questions/3685969/brachistochrone-problem-including-friction-reducing-a-differential-equation

https://www.jstor.org/stable/2974953?seq=1#metadata_info_tab_contents Exploring the Brachistochrone Problem. LaDawn Haws and Terry Kiser

https://math.stackexchange.com/questions/3077935/solving-the-euler-lagrange-equation-for-the-brachistochrone-problem-with-frictio.