Water molecule bond length: Difference between revisions

From wikiluntti
 
(One intermediate revision by the same user not shown)
Line 58: Line 58:
</math>
</math>


The mean speed is (for 3D?)  
The mean speed (for 3d?) is


<math>
<math>
v_\text{mean} = sqrt{ \frac{8k_B T}{\pi m}}
v_\text{mean} = \sqrt{\frac{8k_B T}{\pi m}}
</math>
</math>
where <math>k_B</math> is Boltzmann constant, here <math>k_B = 1</math>.


== Results ==
== Results ==

Latest revision as of 22:12, 12 October 2020

Introduction

Classical Mechanics

Newton Equations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = ma} where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F=-\nabla V} . The system is 1D, thus gradient will be differential, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F= - \frac{d V}{dx}} .

The mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} should be the reduced mass of the oxygen--hydrogen system, but we use mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=1} here.

Potential Function

Lennard--Jones potential with dimensionless parameters for TIPS model:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x) = 4 \left[ \left( \frac1x\right)^{12} - \left( \frac1 x\right)^6 \right] }

where the distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is given in Ångstroms.

Integration

The finite differences (Euler method) are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} v(t) &= \frac{x(t+\Delta t) - x(t)}{\Delta t} \\ a(t) &= \frac{v(t+\Delta t) - v(t)}{\Delta t} \end{align} } and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a(t) = -\frac{\frac{d}{dx}(V(x(t)))}{m} }


Velocity Verlet Algorithm

A very good and easy to implement integration method is velocity Verlet:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x(t + \Delta t) &= x(t) + v(t) \Delta t + \frac12 a \Delta t^2 \\ v(t + \Delta t) &= v(t) + \frac12\left( a(t) + a(t+\Delta t) \right) \Delta t \end{align} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a(t) = a(x(t)) = - \frac1m \frac{d}{dx}V(x(t))} is given at Section . . .

Temperature/ Initial distribution

The initial velocity of the hydrogen atom is chosen randomly from the Maxwell-Boltzmann distribution at given temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(v) = \left( \frac{m}{2\pi k_B T} \right)^{1/2} \exp\left[- \frac12 \frac{mv^2}{k_B T} \right] }

The mean speed (for 3d?) is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_\text{mean} = \sqrt{\frac{8k_B T}{\pi m}} }

where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k_{B}} is Boltzmann constant, here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B = 1} .

Results

Issues

1D statement


References

D.T.W. Lin and C.-K. Chen: A molecular dynamics simulation of TIP4P and Lennard-Jones water in nanochannel, acta Mechanica 173, 181.194 (2004).